First, we load the mtcars
dataset into memory:
library(datasets)
data(mtcars)
Run the following code in your R console. You should be able to understand this code after Lecture 4.
library(tidyverse)
efficiency <- mtcars %>%
as_tibble %>%
transmute(
mpg = mpg,
cylinders = factor(cyl, ordered = is.ordered(c(4, 6, 8))),
weight = wt * 1000,
horsepower = hp,
engine = factor(vs, levels = c(0,1), labels = c("V-shaped", "straight")),
transmission = factor(am, levels = c(0,1), labels = c("automatic", "manual")),
gears = factor(gear)
)
You should see the following table:
efficiency
## # A tibble: 32 x 7
## mpg cylinders weight horsepower engine transmission gears
## <dbl> <fct> <dbl> <dbl> <fct> <fct> <fct>
## 1 21 6 2620 110 V-shaped manual 4
## 2 21 6 2875 110 V-shaped manual 4
## 3 22.8 4 2320 93 straight manual 4
## 4 21.4 6 3215 110 straight automatic 3
## 5 18.7 8 3440 175 V-shaped automatic 3
## 6 18.1 6 3460 105 straight automatic 3
## 7 14.3 8 3570 245 V-shaped automatic 3
## 8 24.4 4 3190 62 straight automatic 4
## 9 22.8 4 3150 95 straight automatic 4
## 10 19.2 6 3440 123 straight automatic 4
## # … with 22 more rows