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Preface

Spiked random matrix models are widely used to model data in which a low-rank signal
exists alongside high-dimensional noise. When the eigenvalues of this signal, known as
spikes, are either above or below a certain critical threshold, the corresponding models have
been widely studied and are well understood.

However, the behavior of models with spikes at the critical threshold is more difficult to
study, and has often remained elusive, despite the existence of data that is not well-explained
by either sub- or supercritical models.

This thesis contains the results of series of projects that investigate the likelihood ra-
tios for Gaussian models with critical spikes. It includes rigorous results illustrating the
transition between the qualitatively different sub- and supercritical regimes, which has ap-
plications not only in statistics, but also in the statistical physics of the SSK model for
magnetism. It also contains edge universality results, demonstrating how the quantities
crucial for understanding the likelihood of critically-spiked Gaussian random matrices can
be extended to their Wigner counterparts.

The thesis concludes with a presentation of results about phenomena occurring exactly
at the critical threshold, determining the contiguous set of alternatives for testing a critical
spike and providing the first description of the limiting likelihood ratio for such tests.
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Chapter 1

Introduction

1.1 Gaussian matrix ensembles

Gaussian matrices, which are symmetric or Hermitian matrices with iid Gaussian entries,
are the simplest examples of random matrix ensembles. Because of this, they are exten-
sively studied, and most familiar random matrix results were established first for Gaussian
matrices, and then extended to other ensembles.

The eigenvalues of Gaussian matrices behave similarly to the eigenvalues of random
matrices with more direct applications in statistics, such as sample covariance matrices for
Gaussian data, which follow the Wishart distribution. This similarity, stemming from the
similarity between the joint densities of eigenvalues in the two models, makes the study
of Gaussian matrices useful not only in its own right, but also as a preliminary step for
establishing results about the eigenvalues of other kinds of random matrix ensembles.

Indeed, for questions of statistical testing, whose resolution invariably require a detailed
understanding of the model likelihood, this analogy between Gaussian matrices and other
random matrix ensembles is particularly useful. In treatments such as [JO20; DJO18],
analyses of large classes of random matrix ensembles have followed the basic pattern of the
corresponding Gaussian analysis.

In addition to their use as a simple proxy for investigating other random matrix ensem-
bles, Gaussian matrices have explicit uses in statistical physics. It is common for statistical
physics models to be defined in terms of matrices of independent {±1}-valued random
variables, whose spectral properties are well-approximated by Gaussians. An example of

1



2 CHAPTER 1. INTRODUCTION

such an approximation, which will be examined in this thesis, is the Spherical Sherrington-
Kirkpatrick (SSK) model, which is a Gaussian approximation of the Sherrington-Kirkpatrick
(SK) model that retains many of the important features of the SK model while being sub-
stantially easier to analyze using Gaussian matrix results.

1.1.1 Definitions of GUE and GOE.

We recall here the definitions of the GUE and GOE. For 1 ≤ i ≤ j ≤ N , let ξij , ηij be
independent N (0, 1) random variables. Then define a Hermitian matrix Z1 with entries

Z1,ij =


ξij if i = j,

1√
2(ξij + iηij) if i < j,

Z1,ji if i > j.

Similarly, define a symmetric matrix Z2 by

Z2,ij =


√

2ξii if i = j,

ξij if i < j

Z2,ji if i > j.

For α ∈ {1, 2}, we call the distribution of Zα the Gaussian Unitary Ensemble (GUE) if
α = 1, and the Gaussian Orthogonal Ensemble (GOE) if α = 2.

The parameter 2/α, typically denoted by β, indexes the number field of which the matrix
entries are elements, and is called the Dyson parameter. Although the Dyson parameteri-
zation is commonly used in the literature, for the results presented in this thesis, it is more
convenient to instead use the parameter α, sometimes known as the Jack parameter [see,
e.g. Ful04], and we will use this notation throughout.

We will also use the term scaled Gaussian matrix to refer to Zα/
√

N , where Zα is an
N ×N Gaussian matrix.

1.1.2 Spiked models

An extension of the Gaussian random matrix model that has been extensively studied in
the statistics literature is the rank-one deformation of a Gaussian matrix ZN given by

WN := ZN√
N

+ hvv∗, (1.1)
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where ∥v∥2 = 1. Such distributions, parameterized by the value h, called the spike, are
known as spiked ensembles. Since the distribution of the eigenvalues of ZN is rotationally
invariant, the direction v has no effect on the distribution of WN , and so is commonly taken
to be the standard basis vector e1, in which case WN differs from ZN /

√
N only in its (1, 1)

entry.
Spiked ensembles were first studied in a statistical context in [Joh01], where the spike

parameterized a rank-one deviation from an identity covariance in a Wishart ensemble,
which arise, for example, in the study of high-dimensional covariance estimation and prin-
cipal components analysis. Eigenvalues of matrix ensembles of the form of Eq. (1.1) display
similar limiting behavior to that of spiked Wishart ensembles, so it is useful to extend the
spike terminology to these “deformed Gaussian” ensembles.

Many spiked random matrix ensembles exhibit a phase transition in the limiting behavior
of the largest eigenvalue. Specifically, spikes h that are strictly smaller than a certain critical
threshold hc do not influence the distribution of the largest eigenvalue, and are known as
subcritical. In ensembles with supercritical spikes h > hc, the largest eigenvalue is separated
from the bulk and converges almost surely to a value strictly above the support of the
eigenvalue bulk.

Such a phase transition was originally identified for spiked Wishart ensembles in [BBP05],
but has since been described in other spiked models. Relevant to the Gaussian ensembles
that are investigate in this thesis, the critical threshold was shown to be hc = 1 for spiked
G(U/O)E in [Péc06] and [Mai07] respectively.

In the supercritical case, that is, when h > 1, the largest eigenvalue of a scaled G(U/O)E
matrix was found in [CDF09] to have Gaussian fluctuations given by

N1/2(λ1 − (h + h−1)) d−→ N (0, α(1− h−2)).

On the other hand, [Péc06; Mai07] showed that in the subcritical case, when h < 1, the
largest eigenvalue has Tracy-Widom fluctuations around 2. In particular,

N2/3(λ1 − 2) d−→ TW2/α .

Moreover, [Péc06] described the limiting distribution of the largest eigenvalue for h = 1
in terms of a Fredholm determinant. In [BV13], Bloemendal and Viràg considered the
largest eigenvalues of Gaussian matrices with critical spike h = 1 + b0N−1/3, describing the
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corresponding one-parameter family of limiting distributions. Throughout this thesis, we
will refer to this limiting distribution as the BV, or Bloemendal-Viràg distribution so that,
according to [BV13, Theorem 1.5],

N−2/3(2− λ
(b0)
1 ) d−→ BV(b0)2/α, (1.2)

where λ
(b0)
1 is the largest eigenvalue of a scaled Gaussian matrix with Dyson parameter 2/α

and critical spike 1 + b0N−1/3.

1.2 Testing and local alternatives in spiked models

For a sequence of models {PN,h} parameterized by h and with null hypotheses

HN,0 : h = hN,0,

some sequences of possible alternative hypotheses are asymptotically impossible to distin-
guish from the null while others can be distinguished with probability approaching 1.

The threshold between these two regimes is a set of sequences of alternatives

HN,1 : h = hN,1 := hN,0 + θaN

indexed by θ, where (aN ) is a sequence chosen such that the corresponding sequence of
likelihood ratios converges to a non-degenerate limit. In this way, the local alternatives hN,1

describe the alternatives that can be tested for with power asymptotically falling strictly
between 0 and 1.

This notion was first formalized with the name “contiguity” in [Le 60]. A sequence of
simple experiments was defined as contiguous if the supports of the null and alternative
distributions asymptotically coincided. The connection between contiguity and the limiting
behavior of the likelihood ratio was codified in the celebrated result known as Le Cam’s
first lemma, and it is this result that will be used in this thesis to establish contiguity.

1.2.1 Likelihood of spiked Gaussians

In context of spiked Gaussian matrices, we let PN,h be the distribution of a spiked Gaussian
matrix as described in Eq. (1.1).
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Due to the rotational symmetry of WN , it is enough for the purposes of testing h to
understand the likelihood of the eigenvalues of WN . For a large family of random ma-
trix distributions, the joint density of the eigenvalues Λ of WN follow a common pattern,
which was extensively cataloged in [Jam64]. In the spiked Gaussian case, the corresponding
representation was shown in [JO20, Lemma 14 (supplementary material)] to be

pN (Λ; h) = c(Λ) · e
2N
α

· h2
4 ·
∫

SN−1
α

exp
{N

α
h · u∗Λu

}
(du), (1.3)

where c(Λ) is a function of the eigenvalues only, and where the integral is taken over the
(N − 1)-sphere with respect to the normalised Haar measure.

As discussed in [Ona14] and cataloged for a much larger family of spiked models in
[JO20], the joint density of eigenvalues Λ of a spiked Gaussian ensemble with a spike of size
h is

pN (Λ; h) = c(Λ) · e
2N
α

· h2
4 · CN

2πi

∫
K

exp
{N

α

[
hz − 1

N

N∑
j=1

log(z − λj)
]}

dz (1.4)

for a constant CN and where K is a contour running from −i∞ to +i∞ and passing to the
right of all the eigenvalues Λ.

1.2.2 Contiguity in spiked random matrix models

In classical statistical models, it is common for contiguous alternatives to be separated by
an O(N−1/2) gap. For Gaussian matrix models of the form Eq. (1.1), this is not necessarily
so, and in the papers [JO20; DJO18] the authors carried out a program of identifying
contiguous alternatives or a large number of spiked random matrix models including the
Gaussian case.

The paper [JO20] investigated tests of subcritical spikes. In the spiked GOE case, this
amounted to testing, for θ ∈ (0, 1).

HN,0 : h = 0 vs. HN,1 : h = θ. (1.5)

The likelihood ratio for this experiment was shown to asymptotically depend on the
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eigenvalues only through the function

N∑
j=1

log(z0(θ)− λj), (1.6)

where z0(θ) = θ + θ−1.

Objects like that in Eq. (1.6), known as logarithmic linear statistics, appear often in
the analysis of random matrix likelihoods due to the appearance of a similar quantity in
the integrand of Eq. (1.4). When z0 is strictly greater than 2, the spectral central limit
theorem established for Gaussian matrices in [BY05], implies that the log-likelihood ratio
for Eq. (1.5) is asymptotically Gaussian.

The likelihood ratio in the supercritical case was analyzed in an as-yet unpublished
extension of [DJO18]. In this case, for a supercritical null spike h0 > 1, the contiguous
experiments were shown to have hypotheses

HN,0 : h = h0 vs. HN,1 : h = h0 + θN−1/2.

In this case, the likelihood ratio depends asymptotically only on the largest eigenvalue,
which in the supercritical case is asymptotically Gaussian.

The “vanishingly supercritical” case, has a null spike of h0 = 1+b0N−α for α < 1/3 and
b0 > 0. This sequence of experiments can be analysed with the same general techniques as
in the supercritical case, while in some sense approaching the critical regime at α = 1/3.
Indeed, the appropriate vanishingly supercritical contiguous experiments are

HN,0 : h = h0 := 1 + b0N−α vs. HN,1 : h = h0 + θN (α−1)/2.

Naively, by plugging α = 1/3 into the above, one might expect that contiguous local
alternative in the critical case should be h1 = h0 + θN−1/3. Demonstrating this fact will
be a goal of this thesis, and only after establishing substantial tools for analysing likelihood
ratios of Gaussian matrices in the first few chapters will such contiguity be proved on the
critical scale in Chapter 4.
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1.3 Log-determinant Central limit theorems

As mentioned in the previous section, logarithmic linear statistics — that is, functions of
the form

LN =
N∑

j=1
log(E − λj)

arise often in the study of random matrix likelihoods. Indeed, understanding these quan-
tities is essential for establishing the likelihood ratio results which are the focus of this
thesis.

When E > 2 is fixed, the limiting distribution of LN is well-known, following from the
spectral central limit theorem of [BY05]. However, for the results that will subsequently
discussed in this thesis, we require Gaussian behavior near, at, or just inside the edge

E = EN = 2 + σN N−2/3, −γ ≤ σN ≪ log2 N (1.7)

for some fixed γ > 0.
Here E is sufficiently close to the edge that the functions fN (z) = log|z − E| do not

appear to be covered even by recent mesoscopic CLTs (e.g. [LS19; LSX20]).
The basic identity

LN =
N∑

j=1
log|λj − E| = log|det(WN − E)|

casts the linear statistic (now with the absolute value under the logarithm) as a log deter-
minant, i.e. in terms of the characteristic polynomial of WN . The latter is the subject of
a substantial literature. In particular, as pioneered by Tao and Vu [TV12] for E = 0, for
Gaussian ensembles WN drawn from GUE or GOE, one can use the Trotter equivalence
to cast the matrix in tridiagonal Jacobi form and analyze the recurrence satisfied by the
principal minors.

Chapter 2 contains a summary of the result of [JKOP20], in which this program is
carried out at the edge of the spectrum to arrive at the following result.

Theorem 1.1. Let WN be a Gaussian matrix whose off-diagonal moments match GUE
(α = 1) or GOE (α = 2) to third order. For edge values E = EN satisfying Eq. (2.1), we
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have
(log|det(WN − E)| − µN )/τN

d−→ N (0, 1), (1.8)

with
µN = 1

2N + σN N1/3 − 2
3σ

3/2
N − 1

6(α− 1) log N, τN =
√

α

3 log N. (1.9)

1.4 Eigenvalue statistic universality

An important generalization of Gaussian matrix ensembles is Wigner matrix ensembles.
Informally, these are symmetric or Hermitian matrices whose entries are independent and
subject to certain distributional restrictions. The first investigation of such matrices was
performed in [Wig58], which proved the semicircle law for Wigner matrices whose entries
have symmetric, variance-one distributions.

Subsequent authors have used the term “Wigner” to refer to similar matrices with
varying technical conditions on the entry distributions. Throughout this thesis, we will use
the following definition:

Definition 1.2 (Wigner matrix). A Wigner matrix is an N ×N matrix WN = [ξij/
√

N ]ij
which is either Hermitian (α = 1) or symmetric (α = 2) and for which the components
{Re ξij , Im ξij}i<j and {ξii} are independent random variables with mean zero and satisfy
some of the following conditions:

W1 E|ξij |2 = 1 for i ̸= j and Eξ2
ii ≤ B for some absolute constant B;

W2 In the Hermitian case, Eξ2
ij = 0 for i ̸= j;

W3 The moments of Im ξij , Re ξij are bounded uniformly in N . That is, for all p ∈ Z>0,
there is a constant Cp such that

E|Im ξij |p, E|Re ξij |p ≤ Cp;

W4 E(Re ξij)3 = E(Im ξij)3 = 0 for i ̸= j.

As in the Gaussian case, we refer to WN + hvv∗, where ∥v∥2 = 1, as a spiked Wigner
matrix with a spike of h.

In the series of papers [TV10; TV11a; TV11b; TV12], Tao and Vu developed a number
of so-called “four-moment theorems.” These concluded that the limiting distributions of
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spin glass ferromagnetic

paramagnetic

Figure 1.1: Phase diagram showing the Spin glass, Paramagnetic, and Ferromagnetic
regimes. Red arrows indicate the transition between Spin glass and Paramagnetic regimes,
which is the focus of this paper.

various eigenvalue statistics were the same when evaluated at the eigenvalues of a Gaussian
matrix as with those of Wigner matrices whose entries match those of a Gaussian matrix
up to order four.

It was under this four-moment assumption that, the universality of the log-determinant
log|det WN | was established in [TV12]. Another important development was in [EKYY12;
KY13a], in which the authors established two-moments theorem for certain eigenvalue statis-
tics near the edge. These took advantage of the fact that scaled Gaussian eigenvalues are
separated from each other by distance of O(N−2/3) at the edge rather than O(N−1) as
in the bulk of the spectrum. This sparsity allowed a reduction in the required number of
matching moments.

The main universality result presented in this thesis is Proposition 2.14 and takes the
form of a three-moment theorem at the edge for a family of eigenvalue statistics that can
be approximated by an integral of the Stieltjes transform. Among these statistics is the
log-determinant, which allows us to extend the log-determinant CLT of Theorem 1.1 to the
Wigner case. In addition to establishing marginal results, this treatment also includes a
method for establishing the joint universality of these statistics.
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1.5 The SSK model

In addition to its statistical significance, the integral term in Eq. (1.3) has an important
physical interpretation. The Spherical Sherrington-Kirkpatrick model with Curie-Weiss
ferromagnetic interaction is a model of magnetism with Hamiltonian

HN (σ) = 1
2
( 1√

N

N∑
i,j=1

Aijσiσj + J

N

N∑
i,j=1

σiσj

)
, (1.10)

where σ ∈
√

NSN−1
2 , J ≥ 0 is known as the coupling constant, and A is a real symmetric

N × N matrix with zeroes on the diagonal and independent upper triangular entries Aij

with mean zero and variance 1. It was introduced in [KTJ76] as a tractable variant of the
original Sherrington-Kirkpatrick model that has discrete spins σ ∈ {±1}N .

[KTJ76] considered Gaussian Aij , but since that paper this assumption has been sub-
stantially weakened. For example, the papers [BL16; BL17; BLW18] considered general
Wigner matrices A. Nevertheless, the Gaussian model remains the benchmark. In fact,
[BDG01] called the model with A from GOE “the standard SSK model” (see also [Tal06]
and [PT07]).

The free energy of the Wigner SSK model is then closely related to the likelihood
Eq. (1.3) with α = 2. Precisely, let WN be a Wigner matrix with a spike of J and zeroes
on the diagonal. Letting Λ be the diagonal matrix of eigenvalues of WN , write

Zα,N =
∫

SN−1
α

exp
{N

α
h · u∗Λu

}
(du),

Fα,N = α

2N
log Zα,N (1.11)

The papers [BL16; BL17; BLW18] made a thorough study of the fluctuations of the free
energy F2,N in the spin glass, para- and ferro-magnetic regimes.1 The fluctuations of the
free energy in the three regimes are shown to be

1. (Spin glass) If β > 1 and J < 1, then

2N2/3

β − 1 (F2,N − F (β)) d−→ TW1 .

1In these papers, the parameterization is slightly different from the one presented here, so that in their
case, the critical threshold is β = 1/2 instead of β = 1.
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2. (Paramagnetic) If β < 1 and β < 1/J , then

N(F2,N − F (β)) d−→ N (f1, a1),

where a1 depends on β but not on J , while f1 depends on both β and J .

3. (Ferromagnetic) If J > 1 and β > 1/J , then

N1/2(F2,N − F (β)) d−→ N (0, a2),

where a2 depends on β.

The leading order term F (β) differs across the regimes:

F (β) =



β − 1
2 log β − 3

4 for spin glass
1
4β2 for paramagnetic
β

2 (J + J−1)− 1
2 log(βJ)− 1

4J−2 − 1
2 for ferromagnetic.

(1.12)

This result characterizes the fluctuations of F2,N in models lying strictly within the three
regimes. The results for the transitions studied in [BL17] and [BLW18] are summarized in
the following table.

Transition Transition window Fluctuations of F2,N

Spin glass - Ferromagnetic J = 1 + b0N−1/3, β > 1 N2/3(F2,N − F (β)) d→ β−1
2 BV(−b0)1

Paramagnetic - Ferromagnetic β = 1
J + BN−1/2, J > 1 N(F2,N − F (β)) d→ G1 + QB(G2).

Here (G1, G2) has a bivariate Gaussian distribution that depends on J but not on B, and
QB is a non-linear function that depends both on J and B.

Concerning the remaining transition between the spin glass and the paramagnetic regimes,
[BL16] and [BL17] conjectureed that the critical window of temperatures for this transition
is β = 1 + O(N−1/3√log N) for any J < 1. They arrived at this conjecture by matching
the orders of the variance of F2,N as β → 1 from above and below.

The discussion in Chapter 3 contains results from [JKOP21] that confirm this conjecture.
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Namely, if

β = 1 + bN−1/3√log N, 0 ≤ J < 1,

then Fα,N has fluctuations of order N/
√

log N . Moreover, as b increases from −∞ to ∞,
we describe the transition of the limiting distribution of Fα,N from Gaussian to the Tracy-
Widom.

Precisely, the main result is as follows.

Theorem 1.3. Consider Fα,N with α = 1 or α = 2, as defined in Eq. (1.11). Let β =
1 + bN−1/3√log N for a constant b ∈ R and let 0 ≤ J < 1. Further let b+ = max{0, b} be
the positive part of b. Then

N√
α
12 log N

(
Fα,N − F (β) + log N

12N

)
d−→ N (0, 1) +

√
3
α

b+TW2/α, (1.13)

where TW2 and TW1 are the complex and real Tracy-Widom distributions, respectively,
independent from the N (0, 1), and where F (β) is as in Eq. (1.12), that is

F (β) =

β − 1
2 log β − 3

4 if b ≥ 0,

1
4β2 if b < 0.

1.5.1 Relevance to statistical testing

Recalling Eq. (1.11) together with Eq. (1.3), we find that for J = 0, Fα,N is distributed as
the scaled log-likelihood ratio for testing

H0 : h = 0 vs. H1 : h = β

in the spiked Gaussian model, under the null hypothesis. Specifically, for β ≤ 1

log pN (Λ; β)
pN (Λ; 0) = 2N

α
[Fα,N − F (β)].

Theorem 1.3 therefore gives the limiting behavior of the null distribution of the likelihood
ratio. The mean shift and variance, both growing on order log N , verify that the null and
alternative distributions fail to be contiguous, and so we cannot directly obtain the limiting
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distribution of the likelihood ratio under alternative hypotheses β near 1.

1.6 The stochastic Airy function

The spectral analysis of certain stochastic differential operators can be a powerful tool for
the understanding of eigenvalues of random matrices. Introduced in [ES07] and studied
rigorously in [RRV11], the operator relevant to the edge eigenvalues of Gaussian matrices
is the so-called stochastic Airy operator

H2/α = − d2

dx2 + x +
√

2αB′(x),

where B′ is the distributional derivative of a standard Brownian motion. Here, H2/α acts
on L2([0,∞)) functions f satisfying the Dirichlet initial condition f(0) = 0.

The random operator H2/α was shown in [ES07; RRV11] to have a simple, lower-bounded
spectrum Λ0 < Λ1 < · · ·, and that for any k ∈ Z>0, the eigenvalue distributions of a scaled
N ×N Gaussian matrix WN satisfy

(N−2/3(λj − 2))1≤j≤k
d−→ (−Λj−1)1≤j≤k.

This analysis was extended to spiked matrices in [BV13]. In the case of Gaussian
matrices with a critical spike of size 1 + b0N−1/3, the largest eigenvalues converge in distri-
bution to the eigenvalues of H2/α acting on functions satisfying the Robin initial condition
f ′(0) = −b0f(0).

In [LP21], Lambert and Paquette made a significant development in the analysis of the
stochastic Airy operator. They studied solutions ϕλ ∈ L2([0,∞)) of −H2/αϕλ = λϕλ for
each λ ∈ C, keeping track of the dependence of these solutions on their behavior at 0.
Lambert and Paquette phrased this problem in terms of the “Stochastic Airy Equation,”
which was the SDE

dϕ′
λ(t) = (t + λ)ϕλ(t) dt + ϕλ(t)

√
2α dB(t),

showing that this equation has a unique (up to a constant multiple) solution in L2([0,∞))
and called this solution the “Stochastic Airy Function,” denoted by SAiλ.

In this way, the results of [ES07; RRV11; LP21] imply that the spectrum of −H2/α, and
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so the limiting distribution of the largest eigenvalues of a Gaussian matrix, is given by

{λ ∈ C : SAiλ(0) = 0}.

In fact, the main result of [LP21] is substantially stronger, stating that, if φN (z) =∏N
j=1(z − λj) is the characteristic polynomial of WN , then, in the sense of uniform conver-

gence in compact sets,

(
wN (1 + λN−2/3/2)φN (2 + λN−2/3)EeGN

eGN
: λ ∈ R

) d−→
(
SAiλ(0) : λ ∈ R

)
, (1.14)

where GN is a centered Gaussian random variable with EG2
N = α

3 log N + O(1), and where
wN is the weight function

wN (z) =
(
(2π)1/4eNz22−N (Nz2)−1/2

√
N !
NN

)−1
.

This result is closely connected with the classical Plancherel-Rotach asymptotics estab-
lished in [PR29], which state that

(
wN (1 + λN−2/3)πN (1 + λN−2/3) : λ ∈ C

)
→
(
Ai(λ) : λ ∈ C

)
, (1.15)

where πN are the orthogonal Hermite polynomials with respect to the measure e−2Nx2 dx.
The convergence of Eq. (1.14) over the whole complex plane was conjectured in [LP21],

and subsequently established in [Ass22] though a complex analytic argument.
In addition to the theoretical results of this thesis that make use of the stochastic

Airy function, Section 5.2 contains the descriptions of algorithms for efficiently solving the
stochastic Airy equations as a function of t or of λ.

1.6.1 The critically-spiked case

The results of [BV13] suggest that the limiting distribution of the largest eigenvalues of a
scaled Gaussian matrix W

(b0)
N with critical spike 1 + b0N−1/3 should be given by

{λ ∈ C : SAi′λ(0) = −b0 SAiλ(0)}.

In Chapter 4, we establish this rigorously, through an extension of Eq. (1.15). Namely,
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if φ
(b0)
N is the characteristic polynomial of W

(b0)
N , then

(
N1/3wN (1 + λN−2/3/2)φ(b0)

N (2 + λN−2/3)EeGN

eGN
: λ ∈ C

)
d−→
(
−b0 SAiλ(0)− SAi′λ(0) : λ ∈ C

)
. (1.16)

This convergence allows us to extend many theorems proved for subcritical Gaussian
matrices in Chapters 2 and 3 to their critical equivalent. Relatively straightforward is the
following central limit theorem, which is the equivalent to Theorem 1.1 in the case that
both the spike and E are exactly on the critical scale:

Proposition 1.4. Let λ
(b0)
1 ≥ · · · ≥ λ

(b0)
N be the eigenvalues of a scaled Gaussian matrix

with Dyson parameter 2/α and critical spike 1 + b0N−1/3. Let γ = 2 + λN−2/3 for some
λ ∈ R. Then

∑N
j=1 log|γ − λ

(b)
j | − N

2 −N1/3C + α+1
6 log N√

α
3 log N

d−→ N (0, 1).

Another important result established in Chapter 4 is a partial description of the limiting
behaviour the log-partition function of the SSK model near the triple point.

Theorem 1.5. Consider Fα,N with α = 1 or α = 2. Let β = 1 + bN−1/3√log N for a
constant b ≥ 0 and let J = 1 + b0N−1/3 for a constant b0 ∈ R.

Then

N√
α
12 log N

(
Fα,N − F (β)− log N

12N

) d−→ N (0, 1) +
√

3
α

b · BV(−b0)2/α,

where BV(−b0)2 and BV(−b0)1 are the complex and real Bloemendal-Viràg distributions
respectively, independent from the N (0, 1), and where

F (β) = β − 1
2 log β − 3

4 .

This result effectively describes half of the critical point of the SSK model, as the half-
plane of parameters {(b0, b) : b0 ∈ R, b < 0} is not yet covered.

Finally, and most importantly, the stochastic Airy machinery will allow us to establish
a representation of the limiting likelihood ratio for testing for the difference between two
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different spiked Gaussian matrices.
In particular, we will demonstrate the following theorem, which is phrased in terms of the

quantity s
(α)
b0

. This informally represents the holomorphic αth root of −b0 SAiλ(0)−SAi′λ(0),
and is defined rigorously in Section 4.3.4.

Theorem 1.6. Let α ∈ {1, 2} and N ∈ Z>0. Let b, b0 ∈ R and let β = 1 + bN−1/3, β0 =
1 + b0N−1/3.

Let pN ( · ; h) be the density of the eigenvalues of an N × N GUE if α = 1 or GOE if
α = 2 with a spike of h. If Λ ∼ pN ( · ; β0), then

pN (Λ; β)
pN (Λ; β0)

d−→
∫
K ebw/αs

(α)
b0

(w)−1 dw∫
K eb0w/αs

(α)
b0

(w)−1 dw
, (1.17)

where K is a contour that runs from −i∞ to +i∞ and passes on the positive side of the
largest zero of s

(α)
b0

.

The limiting object on the left-hand side of Eq. (1.17) is extremely complicated. How-
ever, the convergence of the likelihood ratio without centering or scaling to a non-trivial
limit is an essential result for the contiguity of the experiments

H0 : h = 1 + b0N−1/3 vs. H1 : h = 1 + bN−1/3,

which resolves the question raised in Section 1.2.2 and was the motivation for the direction
of inquiry of this thesis. An important question left for future investigation is a more explicit
description of the limiting quantity on the right-hand side of Eq. (1.17).

1.7 Efficient simulations of random matrix objects

The eigenvalue distribution of G(U/O)E matrices are special cases of the eigenvalue dis-
tributions of so-called “Generalized Gaussian β-ensembles.” Introduced in [DE02], these
are a family of ensembles of tridiagonal matrices parameterized by the Dyson parameter β.
When β = 1 or 2, these eigenvalue distributions match those of GOE and GUE matrices
respectively.

These tridiagonal matrices can be easier to analyse than dense Gaussian matrices, and
indeed this tridiagonal representation is a crucial element in the analysis performed in
[JKOP20; JKOP21]. In addition to their theoretical uses, tridiagonal matrices require less
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memory to store in a computer and can be diagonalized more quickly than dense matrices.
This makes the tridiagonal representation essential when simulating the eigenvalues of large
Gaussian matrices.

In Chapter 5, we extend the ideas of [DE02] to cover spiked matrices. In particular, for
d ∈ Z>0, Section 5.1 describes a family of random banded matrix ensembles with bandwidth
2d + 1 whose eigenvalue distributions match those of a Gaussian matrix with d spikes. It
also contains a similar banded representation of Wishart matrices with d spikes, extending
the tridiagonal representation of Wisharts also given in [DE02].

1.8 Notation and definitions

We establish here some notational and terminological conventions that will be used through-
out this thesis.

If MN is a matrix with real eigenvalues λ1 ≥ · · · ≥ λN and I ⊆ R, then we denote the
eigenvalue counting function NMN

by

NMN
(I) = #{j : λj ∈ I}.

The one-point correlation function of MN , denoted by ρN , is then the density of ENMN

with respect to the Lebesgue measure. That is, for any measurable I ⊆ R, we have

ENMN
(I) =

∫
I

ρN (x) dx. (1.18)

The notation aN ≲ bN means that aN ≤ CbN for some C and N large. Let (BN ) be a
sequence of events. We then say that

1. BN holds asymptotically almost surely (a.a.s.) if P(BN )→ 1 as N →∞.

2. BN holds with high probability if there exists a d > 0 such that

P(Bc
N ) ≲ N−d.

3. BN holds with overwhelming probability (w.o.p.) if, for all A > 0,

P(Bc
N ) ≲ N−A.
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If XN ≲ cN w.o.p. and there are constants C0, C1 such that eventually cN ≥ N−C0

and EXN ≤ NC1 , then EXN ≲ cN (for proof, see e.g. [BK18, Lemma 7.1].) Here and
later “XN ≲ cN w.o.p.” means that there exists C such that event XN ≤ CcN holds
w.o.p. Similarly for statements like XN = O(cN ) w.o.p.

We say that θN is a ΘP(1) variable if θN is a.s. positive and θN , θ−1
N are OP(1). Clearly

exp{OP(1)} = ΘP(1) and log{ΘP(1)} = OP(1). If θN1, θN2 are ΘP(1) then so are θN1θN2

and θN1/θN2.
We collect for later use some elementary criteria for convergence in probability of a

sequence of random variables {XN}.

C1 If for each c large, XN = YN1(c) + YN2(c) with YN1(c) = oP(1) and EYN2(c)2 ≤ 1/c2

for N > N(c), then XN = oP(1).

C2 If for each ε small there exist events EN,ε of probability at least 1−ε for N > N(ε) such
that on EN,ε we have XN = YN1(ε)+YN2(ε) with YNk(ε) = OP(1), then XN = OP(1).



Chapter 2

CLT for the log-determinant

This chapter is drawn from [JKOP20], which was co-authored with Iain Johnstone, Alexei
Onastki and Yegor Klochkov. The majority of this chapter comprises results developed
by the present author. Section 2.2 contains a minimal set of results proved by co-authors
that is required to understand the results of this chapter. These results are stated without
proofs, but with appropriate references to [JKOP20].

2.1 Introduction

Let λ1 ≥ · · · ≥ λN be the eigenvalues of an N ×N Wigner matrix. The logarithmic linear
statistic

LN =
N∑

j=1
f(λj) =

N∑
j=1

log(E − λj)

arises in several applications; we focus in particular on statistical testing in spiked models
and on the fluctuation behavior of the free energy in the spherical Sherrington-Kirkpatrick
(SSK) model of statistical physics. Suppose initially that E > 2 is fixed. In this case
LN −N

∫
f dρSC, where ρSC denotes the semicircle density is asymptotically Gaussian with

finite variance that depends on the first four moments of the entries of WN . Since f(z) =
log(E−z) is analytic in a neighborhood of the semi-circle support, this follows from general
CLTs for linear statistics, e.g. [BY05].

19
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This chapter concerns Gaussian behavior of the log determinant

LN =
N∑

j=1
log|λj − E| = log|det(WN − E)|

near, at, or just inside the edge:

E = EN = 2 + σN N−2/3, −γ ≤ σN ≪ log2 N (2.1)

for some fixed γ > 0. Specifically, we will prove the following result:

Theorem 2.1. Let WN be a Wigner matrix whose off-diagonal moments match GUE (α =
1) or GOE (α = 2) to third order. For edge values E = EN satisfying Eq. (2.1), we have

(log|det(WN − E)| − µN ) /τN
d−→ N (0, 1), (2.2)

with
µN = 1

2N + σN N1/3 − 2
3σ

3/2
N − 1

6(α− 1) log N, τN =
√

α

3 log N. (2.3)

2.2 Gaussian case

Theorem 2.1 is proved in [JKOP20] by first establishing the result for GUEs, extending it to
GOEs using an eigenvalue interlacing result of [FR99], and then using a Lindeberg swapping
argument to conclude the complete result for Wigner matrices whose entry distributions
have moments that match those of Gaussian matrices up to appropriate order.

The following Theorem 2.2 was developed for GUE matrices by Alexei Onatski and
Yegor Klochkov in [JKOP20]. In this section, we show how to extend this result to the
GOE case before proceeding to the more general Wigner case in Section 2.3.

Theorem 2.2 ([JKOP20, Theorem 2]). Consider a matrix ŴN from a (scaled) general
Gaussian β-ensemble with β = 2/α. Let DN = det(ŴN − 2θN ), where 2θN ≡ E = 2 +
N−2/3σN with (log log N)2 ≪ σN ≪ (log N)2 . Then,

(log |DN | − µN )/τ̃N
d→ N (0, 1),

where
τ̃N =

√
αr(θ−2

N ) with r(x) = log 1
2[1 + (1− x)−1/2].
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Remark 2.3. Theorem 2.2 concerns “general Gaussian β-ensembles.” These are ensembles
of tridiagonal matrices introduced in [DE02] that generalize the eigenvalue behavior of Gaus-
sian matrices. In particular, when β = 1, 2, 4, the eigenvalues of a “Gaussian β-ensemble”
have the same distribution as the eigenvalues of a GOE, GUE or Gaussian Symplectic En-
semble (GSE) respectively. Here, the GSE is a symmetric matrix ensemble with quaternion
entries, whose distribution is invariant under symplectic transformation.

Theorem 2.2 covers singularities 2θN = E = 2 + N−2/3σN in the range (log log N)2 ≪
σN ≪ log2 N for all positive α. Section 3 of [JKOP20] details how to extend the result to
singularities at a distance of exact order N−2/3 away from the edge, or even (just) inside
the bulk. That is, it concerns sequences σN satisfying

−γ ≤ σN ≤ σ̄N := (log log N)3 for some γ > 0. (2.4)

The extension to this case relies on the properties of GUE, and so allows us to conclude
Theorem 2.1 only for GUE matrices.

In order to further extend the result to GOE matrices, we make use of the following
proposition, which connects the fluctuations of a linear statistic of a GUE with those of a
GOE.

In the following few results, we will use the following notation: for a function f : R → R
and an N ×N matrix W with real eigenvalues, we write

f(W ) :=
N∑

j=1
f(λj),

where λ1 ≥ · · · ≥ λN are the eigenvalues of W .

Proposition 2.4. Let W C
N and W R

N be N×N scaled GUE and GOE matrices, respectively.
Suppose that fN is a series of linear statistics such that

fN (W C
N ) = aN + OP(bN ),

for some sequences aN and bN . Then,

fN (W R
N ) = aN + OP(bN + TV(fN )),
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where TV(fN ) is the total variation of the univariate function fN : R → R.

If the fN are uniformly bounded, this result is uninformative about the fluctuations of
fN (W R

N ), since bN and TV(fN ) are both O(1). It becomes more useful when the fN have
singularities in or near the bulk distribution. In particular, a critical technical result of
[JKOP20] is lemma 18. It considers the linear statistics f l

c(λ) = (E − λ)−l1{|E−λ|>cN−2/3},
stating that f(W C

N ) has fluctuations of order N−1+ 2
3 l. In this case, TV(f l

c) = O(N 2
3 l), and

so Proposition 2.4 allows the extension of [JKOP20, lemma 18] to GOEs.
The main engine for proving Proposition 2.4 is an identity stated in [FR99], which relates

the eigenvalues of a GUE to the eigenvalues of two independent GOEs. In particular, we
use it in the following lemma.

Lemma 2.5. Let MC
N be an N × N GUE, and let f be a function with total variation

TV(f) <∞. If MR
N , M̃R

N are two independent N ×N GOEs, then

f(MC
N ) d= 1

2(f(MR
N ) + f(M̃R

N )) + XN , (2.5)

where |XN | ≤ TV(f), and d= denotes equality in distribution.

Proof. Let MR
N , M̃R

N+1 be independent N ×N and (N +1)× (N +1) GOEs. Call the eigen-
values of MR

N and M̃R
N+1 {λi}Ni=1 and {λ̃i}N+1

i=1 , respectively. Further, denote the combined
set of eigenvalues {λi}Ni=1 ∪{λ̃i}N+1

i=1 by Λ+, and enumerate its elements in decreasing order

Λ+ = {λ+
1 ≥ · · · ≥ λ+

2N+1}.

[FR99, Theorem 5.2] implies that the even elements of this set (that is, {λ2, λ4, . . . , Λ2N})
are equal in distribution to the eigenvalues of an N ×N GUE.

Thus, if MC
N is an N ×N GUE, we have

f(MC
N ) d=

N∑
i=1

f(λ+
2i)

= 1
2
(2N+1∑

j=1
f(λ+

j ) +
N∑

i=1
[f(λ+

2i)− f(λ+
2i−1)]− f(λ+

2N+1)
)

= 1
2
(
f(MR

N ) + f(M̃R
N+1)− f(λ+

2N+1) +
N∑

i=1
[f(λ+

2i)− f(λ+
2i−1)]

)
.
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Notice that, since λ+
j are ordered, we have

∣∣∣ N∑
i=1

[f(λ+
2i)− f(λ+

2i−1)]
∣∣∣ ≤ TV(f).

Further, let M̃R
N be the principal submatrix of M̃R

N+1, which is thus independent and equal
in distribution to MR

N . If we let µ̃1, . . . , µ̃N be the eigenvalues of M̃R
N , then Cauchy’s

interlacing theorem yields

λ̃1 ≥ µ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃N ≥ µ̃N ≥ λ̃N+1,

and so we have

|f(M̃R
N+1)− f(λ+

2N+1)− f(M̃R
N )| =

∣∣∣ N∑
i=1

f(λ̃i)−
N∑

i=1
f(µ̃i) + (f(λ̃N+1)− f(λ+

2N+1))
∣∣∣

≤
N∑

i=1
|f(λ̃i)− f(µ̃i)|+ |f(λ̃N+1)− f(λ+

2N+1)|

≤ TV(f).

We conclude that Eq. (2.5) holds.

An immediate useful corollary is as follows.

Corollary 2.6. Under the assumptions of Lemma 2.5,

Ef(MR
N ) = Ef(MC

N ) + O(TV(f)),

Var f(MR
N ) ≤ 2 Var f(MC

N ) + 2TV2(f).

Remark 2.7. Notice that Lemma 2.5 and Corollary 2.6 also hold for scaled Gaussian
matrices W

R/C
N = M

R/C
N /

√
N , since f(W R/C

N ) = g(MR/C
N ) for g(λ) = f(λ/

√
N), which

satisfy TV(f) = TV(g).

However, to finish proving Proposition 2.4 in its generality, we require the following
technical lemma about tightness.

Lemma 2.8. Let XN , YN be iid sequences of random variables such that XN + YN is tight.
Then XN (and thus also YN ) is tight.
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Proof. For any constant K, we have

P(XN > K) = P(XN > K, YN > K)1/2 ≤ P(|XN + YN | > K)1/2,

and similarly,
P(XN < −K) ≤ P(|XN + YN | > K)1/2,

which yields
sup
N

P(|XN | > K) ≤ 2 sup
N

P(|XN + YN | > K)1/2,

where the right hand side of the latter inequality can be made arbitrarily small by the
tightness of XN + YN .

With all these results in hand, we are ready to complete the proof of Proposition 2.4.
We have∣∣∣∣fN (W R

N )− aN

bN + TV(fN ) + fN (W̃ R
N )− aN

bN + TV(fN )

∣∣∣∣ = 2
∣∣∣∣(fN (W R

N ) + fN (W̃ R
N ))/2− aN

bN + TV(fN )

∣∣∣∣ (2.6)

≤ 2
∣∣∣∣(fN (W R

N ) + fN (W̃ R
N ))/2 + XN − aN

bN

∣∣∣∣+ 2
∣∣∣∣ XN

TV(fN )

∣∣∣∣.
By Lemma 2.5, the first term in the latter sum is tight, since it is equal in distribution to
(fN (W C

N )− aN )/bN , whereas the second term is no larger than 2. But since the two terms
on the left hand side of Eq. (2.6) are iid, Lemma 2.8 yields that they must be tight, and so

fN (W R
N ) = aN + OP(bN + TV(fN )).

2.3 Extension to Wigner matrices

2.3.1 Outline of approach

Proving that a Wigner matrix W ′
N satisfies a certain property as long as a matrix WN from

G(U/O)E satisfies this property is often based on the Lindeberg swapping process, where
elements of WN are replaced by the elements of W ′

N one by one without losing the property
in question. Typically, one needs to show that any individual swap does not change the
expectation EQ(M) of some smooth function Q(·) of the matrix M participating in the
swapping process too much.
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Although our initial interest is in the asymptotic normality of the log-determinant, we
will eventually need to use Lindeberg swapping for several functionals which depend on
the Stieltjes transform evaluated at z = E + iη for E near the edge and η distant at least
N−2/3−δ from the real axis — here the gross N−2/3 scale is that appropriate for working
at the edge of the spectrum. We outline the swapping approach for the log-determinant
example but with the general class of “Stieltjes edge functionals” in mind.

We adopt the method of [TV12], with modifications to work at the edge, and under
weakened assumptions, as described below. We call a quantity S(WN ) insensitive at rate
δN if S(WN ) − S(W ′

N ) = O(δN ). Let LN (WN ) = log |det(WN − E)|. To extend the
asymptotic normality of LN (WN ) to LN (W ′

N ) it is sufficient, via a standard smoothing
argument, to show that EG ◦ LN (WN ) is insensitive at rate δN for scalar functions for
which ∥G(j)∥∞ ≤ bj

N . For the log-determinant δN = bN ≍ (log N)−1/4 will work.

In an initial approximation step, we show that it suffices to replace LN (W ) by a function
of the Stieltjes transform sW = 1

N tr(W − z)−1

g(W ) = N

∫ N100

γN

Im sW (E + iη) dη. (2.7)

Here γN = N−2/3−δ: to show that values 0 ≤ η ≤ γN can be neglected, we use an anti-
concentration result that guarantees that with high probability, all eigenvalues are at least
N−2/3−ζ–distant from E. This too is proved by Lindeberg swapping, now with a second
Stieltjes functional, in Proposition 2.15.

The swapping argument is now applied to show that EQ(WN ) is insensitive for Q of the
form (G ◦ g)(WN ). To review this in outline, let γ index an ordering of the independent
components {Re ξij , Im ξij}i<j and {ξii} of WN . Thus γ runs over N2 and N(N + 1)/2
elements in the Hermitian and symmetric cases respectively. By convention in each case,
the first N values of γ index the diagonal matrix entries. Thus W γ will refer to a matrix
in which the elements prior to γ come from W ′

N while those at γ or later come from WN .

At stage γ in the swapping process, we can write W (0) = W γ , W (1) = W γ+1, and

W (0) = W0 + ξ(0)
√

N
V, W (1) = W0 + ξ(1)

√
N

V, (2.8)

and W0 = W γ
0 is independent of both ξ(0) and ξ(1). In the symmetric case, V is one of the

elementary matrices of the form eae∗
a or eae∗

b + ebe
∗
a, for 1 ≤ a < b ≤ N . In the Hermitian
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case, we add matrices ieae∗
b − iebe

∗
a. The variables ξ(0) and ξ(1) correspond to the γth

components of WN and W ′
N respectively. All matrices W γ are Wigner matrices.

To focus on individual swaps, write

EQ(W )−EQ(W ′) =
∑

γ

E∆γ ,

with ∆γ = Q(W γ)−Q(W γ+1) = Q(W (0))−Q(W (1)).

We consider W (0) and W (1) as perturbations of W0. Thus, set W γ
t = W γ

0 + tN−1/2Vγ ,
and introduce Qγ(t) = Q(W γ

t ). Note that this function is independent of ξ(i), and that

∆γ = Qγ(ξ(0))−Qγ(ξ(1)).

In a Taylor expansion of Qγ , formal for now, this independence implies

E[Qγ(ξ(i))] =
∑

j

1
j!E[Q(j)

γ (0)] E
(
[ξ(i)]j

)
.

If moments match at order j ≤ k−1, that is, E([ξ(0)]j) = E
(
[ξ(1)]j

)
, then the jth order

term in E∆γ vanishes. If, as one expects, Q
(k)
γ (t) is of order N−k/2bN , and bounding the

remainder term appropriately leads to the required bounds on E∆γ . This is formalized in
Proposition 2.9.

To show that such derivative bounds hold specifically for Q = G ◦ g when g is as in
Eq. (2.7), we need good bounds for ∂j

t gγ(t) when gγ(t) = g(W γ
t ). Introduce notation for

the resolvent and Stieltjes transforms

Rγ
t = Rγ

t (z) = (W γ
t − z)−1, sγ

t (η) = N−1 tr Rγ
t (E + iη). (2.9)

The standard resolvent perturbation argument (equations Eq. (2.18)-Eq. (2.21)) shows that
∂j

t sγ
t = cjN−j/2−1 tr[(Rγ

t V )jRγ
t ].

This is bounded for E near the edge and η > N−2/3−δ using the entrywise local law
(see Proposition 2.12(i)). Working at the edge allows, through use of the Ward identity,
improvements in bounds because Im R is small. What results (see the proof of Proposition
2.14) are bounds ∥∂j

t gγ(t)∥∞ ≲ N−j/2aN with aN = 1 in the log-determinant case. These
bounds are useful both for reducing the number of matching moments required to three (for
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off-diagonal entries) and requiring only bounded variances (for diagonal entries). Combining
with the derivative bounds on G, the chain rule shows that we obtain the desired insensitivity
with δN = aN bN = bN .

2.3.2 Lindeberg swapping formalism for asymptotically flat Q

Throughout this chapter, we will use the term “Wigner matrix” to refer to Wigner matrices
satisfying W1–W3 as defined in Definition 1.2.

Moreover, we will say that the moments of two Wigner matrices WN , W ′
N match to order

m if, for an integer 0 < a ≤ m,

E(Re ξij)a = E(Re ξ′
ij)a, E(Im ξij)a = E(Im ξ′

ij)a

for all 1 ≤ i < j ≤ N . Note that this constrains only the off-diagonal entries. The diagonal
entries already match to order one by assumption, which is all that we need.

This means that W4 can be rephrased as the condition that the entries of a matrix WN

match those of a Gaussian matrix up to order 3.

In Proposition 2.9 and its consequence Proposition 2.10, we make the swapping argument
explicit for abstract Q satisfying generic asymptotic ‘flatness’ derivative bounds. In the
next section we assemble tools — resolvent perturbation and local law — with the goal of
establishing, in Proposition 2.14, the necessary flatness bounds for some specific choices of
Q needed for our later applications.

Fix c0 > 0 and set ∥F∥c0 = sup{|F (t)|, |t| ≤ N c0}. Let δN → 0 in such a way that
δN ≳ N−c1 for some c1 > 0. Let Q be a function on N ×N Hermitian/symmetric matrices
taking values in [0, 1]. Let Wigner matrices WN , W ′

N be given and define Qγ(t) = Q(W γ
t )

as in Section 2.3.1. We say that Q satisfies condition F or F (δN ) if for all γ and 1 ≤ k ≤ 4
we have w.o.p. that

∥Q(k)
γ ∥c0 ≲ N− k

2 δN . (F)

Proposition 2.9. Let WN , W ′
N be Wigner matrices whose moments match to third order.

Let c0, c1 > 0 be fixed and for each j = 1, . . . , m, let Qj : CN×N → [0, 1] satisfy condition
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F (δj,N ). If Q = ∏m
j=1 Qj, then,

EQ(WN )−EQ(W ′
N ) ≲ max

j=1,...,m
δj,N . (2.10)

Proof. Consider first the case m = 1. We set ∆γi = Q(W (i))−Q(W0), and decompose

EQ(WN )−EQ(W ′
N ) =

∑
γ

E(∆γ0 −∆γ1).

Let EN = EN (W γ
0 ) denote the overwhelming probability event Eq. (F) and then introduce

‘good’ events GNi = EN ∩ {|ξ(i)| ≤ N c0}. Let A be a fixed constant such that N2−A ≲ δN .
Using boundedness of Q and the moment bound W3, with p chosen so that pc0 > A, we
have

E(∆γ0 −∆γ1) = E(∆γ01(GN0))−E(∆γ11(GN1)) + O(N−A). (2.11)

As before, set Qγ(t) = Q(W γ
t ), so that ∆γi = Qγ(ξ(i)) − Qγ(0). By Taylor expansion,

we have

∆γi =
k−1∑
j=1

1
j!Q

(j)
γ (0)(ξ(i))j + 1

k!Q
(k)
γ (ξ∗)(ξ(i))k,

for some ξ∗ with |ξ∗| ≤ |ξ(i)|. Noting that Qγ(t) and event EN are independent of ξ(i), we
have

E[Q(j)
γ (0)(ξ(i))j1(GNi)] = E[Q(j)

γ (0)1(EN )] E[|ξ(i)|j1(|ξ(i)| ≤ N c0)]

= E[Q(j)
γ (0)1(EN )] E[|ξ(i)|j ] + O(N−j/2δN ·N−A),

where we used the fact that E[|ξ(i)|j1(|ξ(i)| > N c0)] ≤ CpN−c0(p−j) = O(N−A) for suitable
p, as follows from W3 and the Hölder inequality. For the remainder, on event GNi we also
have |Q(k)

γ (ξ∗)| ≤ ∥Q(k)
γ ∥c0 ≲ N−k/2δN , and hence

|E[Q(k)
γ (ξ∗)(ξ(i))k1(GNi)]| ≲ N−k/2δN .

Summarizing, we have

E[∆γi1(GNi)] =
k−1∑
j=1

1
j!E[Q(j)

γ (0)1(EN )] E[|ξ(i)|j ] + O(N−k/2δN + N−A).
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Choose k = k(γ) so that E(ξ(1))j = E(ξ(0))j for 1 ≤ j ≤ k − 1. Then the sums cancel
and Eq. (2.11) yields

E(∆γ0 −∆γ1) = O(N−k/2δN + N−A).

For the O(N2) off-diagonal terms, moment matching to third order allows k(γ) = 4,
while for the N diagonal terms, we take k(γ) = 2, since then only Eξ(i) = 0. Summing over
all γ, we obtain

EQ(WN )−EQ(W ′
N ) = O(δN + N2−A) = O(δN ) (2.12)

from the choice of A.
For m > 1, apply the product rule, use Eq. (F) and ∥Qγ∥c0 ≤ 1:

∥Q(k)
γ ∥c0 ≲

∑
ℓ1+···+ℓm=k

(
k

ℓ1, . . . , ℓm

) ∏
1≤j≤m

ℓi≥1

N−
ℓj
2 δj,N ≲ N− k

2 max
j=1,...,m

δj,N ,

Thus Q satisfies F (maxj δj,N ) and the result follows from Eq. (2.12).

We use Proposition 2.9 to formulate a criterion that allows joint convergence in dis-
tribution of vector functions of WN to be transferred to the corresponding functions of
W ′

N .

Proposition 2.10. Let WN , W ′
N be Wigner matrices whose moments match up to third

order. Let ξN = ξN (WN ) and ξ′
N = ξN (W ′

N ) both be Rm valued random vectors. Suppose
that ξN

d→ ξ, and that each component ξj of the limit has a continuous distribution function.

Let ηN → 0 be given, and suppose that for each 1 ≤ j ≤ m and s ∈ R there exist
functions Q±

j (·, s) satisfying condition F (δj,N ) such that for W = WN , W ′
N , w.o.p.

1{ξNj(W ) ≤ s} ≤ Q+
j (W, s) ≤ 1{ξNj(W ) ≤ s + ηN} (2.13)

1{ξNj(W ) ≤ s− ηN} ≤ Q−
j (W, s) ≤ 1{ξNj(W ) ≤ s} (2.14)

Then we also have (joint) convergence ξ′
N

d→ ξ.

Proof. Let δN = maxj δj,N . It suffices to show that for each s = (sj) that

P(ξN ≤ s− ηN )−O(δN ) ≤ P(ξ′
N ≤ s) ≤ P(ξN ≤ s + ηN ) + O(δN ). (2.15)
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Indeed, we then have

|P(ξ′
N ≤ s)−P(ξN ≤ s)| ≤

∑
j

P(|ξNj − sj | ≤ ηN ) + O(δN )→ 0,

since each limiting component ξj has a continuous distribution function.

We verify the upper bound in Eq. (2.15). For each A > 0 large, we have from Eq. (2.13)
for W ′

N , then Proposition 2.9 and then Eq. (2.13) again, now for WN , that

P(ξ′
N ≤ s) ≤ E

∏
j

Q+
j (W ′

N , sj) + O(N−A)

≤ E
∏
j

Q+
j (WN , sj) + O(δN ) ≤ P(ξN ≤ s + ηN ) + O(δN ).

The lower bound in Eq. (2.15) follows similarly, using Eq. (2.14).

2.3.3 Flatness for Stieltjes functionals

Resolvent perturbation: deterministic bounds

We recall and modify some bounds of [TV12] on stability of Hermitian matrices with respect
to perturbation in one or two entries, using Ward’s identity to improve the bounds at the
edge.

Let M0 be a Hermitian N × N matrix, z = E + iη ∈ C+, where C+ is the open half-
plane C+ = {z ∈ C : Re(z) > 0}, and V an elementary matrix as defined immediately after
Eq. (2.8). Set Mt = M0 + tN−1/2V and Rt = Rt(z) = (Mt−z)−1, and st(z) = N−1 tr Rt(z).
Recall from [TV12] the definitions of the matrix norms ∥A∥(q,p), and in particular

∥A∥(∞,1) = max
1≤i,j≤N

|Aij |, ∥A∥(∞,2) = max
i

(∑
j

|Aij |2
)1/2

.

Note also that if V is an elementary matrix, then

| tr(AV )| = | tr(V A)| ≤ 2|A|(∞,1) (2.16)

∥AV B∥(∞,1) ≤ 2∥A∥(∞,1)∥V ∥(∞,1)∥B∥(∞,1). (2.17)

Let κN (z, t) = tN−1/2∥Rt∥(∞,1). Lemma 12 of [TV12] says that if κN (z, t) → 0 as
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N →∞, then for large N

Rt+u = Rt +
∞∑

j=1

( −u√
N

)j
(RtV )jRt, (2.18)

with the right side being absolutely convergent. In addition, for 1 ≤ p ≤ ∞,

∥Rt∥(∞,p) ≤ ∥R0∥(∞,p) exp{2|t|N−1/2∥R0∥(∞,1)}. (2.19)

Here the factor 2 arises from the use of Eq. (2.17) in the Tao-Vu argument. The same
bound holds with the roles of R0 and Rt reversed.

Expansion Eq. (2.18) allows evaluation of t-derivatives of st(z). Indeed

∂j
t st(z) = j!N−j/2cj(z, t) (2.20)

cj(z, t) = (−1)jN−1 tr((RtV )jRt). (2.21)

The following variant of [TV12, Proposition 13] yields uniform bounds on cj in terms of
∥ Im R∥∞ = max1≤i≤N | Im Rii|, which allows tighter bounds near the edge.

Proposition 2.11. Let c0 and A be small and positive, σ̌N = (log N)O(log log N), and define

Se(A) = {z = E + iη ∈ C : |E − 2| ≤ N−2/3σ̌N , η > N−2/3−A} (2.22)

κN = sup
|t|≤Nc0 ,z∈Se(A)

|t|∥R0∥(∞,1)/
√

N.

Then for z ∈ Se(A) and |t| ≤ N c0,

|cj(z, t)| ≤ (Nη)−12je2(j+1)κN ∥R0∥j−1
(∞,1)∥Im R0∥∞. (2.23)

Proof. From the cyclic property of traces, then Eq. (2.16) and Eq. (2.17), we have

|tr((RtV )jRt)| = |tr(V (RtV )j−1R2
t )| ≤ 2∥(RtV )j−1R2

t ∥(∞,1) ≤ 2j∥Rt∥j−1
(∞,1)∥R

2
t ∥(∞,1).

The Ward identity, e.g. [BK18, eq. (3.6)] says that

∑
j

|Rij |2 = η−1 Im Rii
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is valid for any resolvent matrix R = (W − E − iη)−1 with η ̸= 0 and Hermitian (or
symmetric) W . For η > 0, we have

∥R∥2(∞,2) = sup
i

∑
j

|Rij |2 = η−1∥ Im R∥∞. (2.24)

If B is a normal matrix, (i.e. B∗B = BB∗), then

∥AB∥(∞,1) ≤ ∥A∥(∞,2)∥B∥(∞,2). (2.25)

This uses the Cauchy-Schwarz bound |(AB)ij |2 ≤
∑

k |Aik|2
∑

k |Bkj |2, since B normal im-
plies ∑k |Bkj |2 = ∑

k |Bjk|2 ≤ ∥B∥2(∞,2) .

The resolvent of a Hermitian matrix is normal, so from Eq. (2.25), Eq. (2.19), and then
Eq. (2.24) we have

∥R2
t ∥(∞,1) ≤ ∥Rt∥2(∞,2) ≤ e4κN ∥R0∥2(∞,2) = η−1e4κN ∥ Im R0∥∞.

Combine the last two displays and use Eq. (2.19) to bound ∥Rt∥(∞,1) ≤ e2κN ∥R0∥(∞,1) to
arrive at Eq. (2.23).

Local law

We will need the local law for Wigner matrices and some of its important consequences, in
particular at the spectral edge.

Proposition 2.12. Let WN be a Wigner matrix.

(i) (local law) Let R(z) = (WN−zI)−1 denote the resolvent matrix and ssc(z) the Stieltjes
transform of the semicircle law. Fix τ > 0 small. For each ε > 0, we have w.o.p.

Rij = ssc(z)δij + O(N εΨ(z)),

uniformly for z ∈ S(τ) = {E + iη : |E| < τ−1, N−1+τ ≤ η ≤ τ−1} and i, j = 1, . . . , N ,
where

Ψ(z) =
√

Im ssc(z)
Nη

+ 1
Nη

.
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(ii) (semi-circle law on small scales) For each ε > 0, we have w.o.p. that

NWN
(I) = N

∫
I

ρsc(dx) + O(N ε),

uniformly for all intervals I ⊂ R, where NWN
(I) denotes the number of eigenvalues

of WN in I and ρsc denotes the semi-circle law.

(iii) (at the edge.) Let A > 0 be small and fixed, σ̌N = (log N)O(log log N), and let Se(A) be
the edge domain Eq. (2.22). For each ε > 0 and uniformly for z = E + iη ∈ Se(A),
we have w.o.p.

∥R∥(∞,1) ≲ 1 ∧ η−1, ∥ Im R∥∞ ≲ (η1/2 + N−1/3+ε+A) ∧ η−1. (2.26)

Let W0 = W−ξN−1/2V with V an elementary matrix and ξ satisfying moment bounds
W3. Set R0 = (W0 − zI)−1. Then the bounds Eq. (2.26) apply to R0 also.

Remark 2.13. For clarity, we emphasize that these are simultaneous high probability
bounds for all z in the indicated ranges. For example, then w.o.p.

sup
z∈Se(A)

(Im z ∨ 1)|Im R(z)|∞ ≲ 1.

Such statements follow from the N2-Lipschitz continuity of Rij(z), ssc(z) and of the right
side bounds over the indicated ranges, c.f. e.g. [BK18, Remark 2.7].

Proof. For (i) and (ii), see e.g. [BK18, Theorems 2.6, 2.8].
We turn to (iii). Basic bounds on ssc(z) , e.g. [EY17, Lemma 6.2], establish for η > 0,

|E| ≤ 10 and κ = ||E| − 2| that

|ssc(z)| ≤ 1, Im ssc(z) ≲
√

κ + η.

For N−2/3−A ≤ η ≤ 1, we have Ψ(z) ≲ (Nη)−1/2 ≤ N−1/6+A/2 and so from the local law
∥R∥(∞,1) ≲ 1. For η ≥ 1, just use the elementary bound |Rjk| ≤ η−1 arising from the
spectral decomposition

Rjk(E + iη) =
N∑

l=1

ul(j)u∗
l (k)

λl − E − iη , (2.27)

where ul(j) denotes the j-th component of the eigenvector ul corresponding to λl(WN ).
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For (Im R)jj we exploit the improved bounds on Im ssc at the edge. Since κ ≤ N−2/3σ̌N ,
we have Im ssc ≲ N−1/3σ̌1/2 + η1/2 and Nη ≥ N1/3−A, and conclude

Ψ(z) ≲ N−1/6σ̌1/4
√

Nη
+ 1√

Nη1/2
+ 1

Nη
≲ N−1/3+A.

Hence, the second part of Eq. (2.26) follows from the local law.

Turning to R0, we put ∆ = W −W0 = N−1/2ξV and use the resolvent identity R0 =
R + R∆R + R0(∆R)2. Write ∥ · ∥∗ for ∥ · ∥(∞,1). Even for R0, the bound ∥R0∥∗ ≤ η−1

follows from Eq. (2.27) as before. So to conclude the rest of Eq. (2.26) for R0, it suffices to
show that w.o.p. ∥R0 −R∥∗ ≲ N−1/3+ε+A for N−2/3−A ≤ η ≤ 1.

We have the trivial bound ∥R0∥∗ ≤ η−1 ≤ N2/3+A. Since W3 implies that |ξ| ≤ N ε/2

w.o.p., we have that ∥∆∥ ≲ N−1/2+ε/2, and along with ∥R∥∗ ≲ 1, and bound Eq. (2.17) for
elementary matrices, we find that w.o.p. both

∥R∆R∥∗ ≲ N−1/2+ε/2, ∥R0(∆R)2∥∗ ≲ N2/3+A−1+ε ≲ N−1/3+ε+A.

Stieltjes functionals

We return to establishing flatness condition F for certain functionals Q = G◦g. Let W be an
Hermitian matrix and sW (z) its empirical Stieltjes transform. In the following proposition,
we consider examples of Stieltjes functionals g(W ) = Λ(sW ) for some continuous linear
functional Λ acting on functions holomorphic on C+.

The first two of these examples will be used in the next subsection to extend the non-
concentration property for the eigenvalues of G(U/O)E matrices to Wigner matrices (Propo-
sition 2.15) and, using this, to extend the log determinant CLT to Wigner matrices. The
last two examples are key to the analysis of the SSK model in Chapter 3, which details
results from [JKOP21]. There, we need to extend results on the k-th largest eigenvalue and
the trace of the inverse powers of z −WN from G(U/O)E to Wigner matrices.

Proposition 2.14. Let W be a Wigner matrix. Let ε > 0, 0 < c0 < 1/2 and let E ∈ R be
such that |E − 2| ≲ σ̌N N− 2

3 +A.

For each of the following statistics, define functions g : CN×N → R, G : R → R and a
sequence δN according to the following specification in each case for 1 ≤ j ≤ 4:
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1. Log-determinant: with γN = N−2/3−ε,

g(W ) = N

∫ N100

γN

Im sW (E+iη) dη, ∥G(j)∥∞ ≤ (log N)−j/4, δN = (log N)−1/4.

2. Eigenvalue counting: with η = N−2/3−9ε, E1 < E2 such that maxi|Ei−2| ≲ N−2/3+10ε,
and constants CJ > 0,

g(W ) = N

π

∫ E2

E1
Im sW (x + iη) dx, ∥G(j)∥∞ ≤ (log N)Cj , δN = N−1/3+O(ε).

3. Inverse moments: with η = N−2/3−ε and l ∈ Z>0,

g(W ) = N− 2
3 l+1 Re s

(l−1)
W (E + iη), ∥G(j)∥∞ ≤ (log N)Cj , δN = N− 1

3 +O(ε).

In each of the cases listed above, the corresponding function Q = G ◦ g satisfies the
condition of Eq. (F). That is, for 1 ≤ k ≤ 4, it follows w.o.p. that

∥Q(k)
γ ∥c0 ≲ N− k

2 δN .

Proof. Define gγ(t) = g(W γ
t ) so that Qγ(t) = G(gγ(t)). In order to bound Q

(k)
γ (t) we start

with bounds for ∂j
t gγ . Recalling Eq. (2.9), we have gγ(t) = Λ(sγ

t ). Standard results on
differentiation of integrals and then Eq. (2.20) imply that

∂j
t gγ(t) = Λ(∂j

t sγ
t ) = j!N− j

2 Λ(cγ
j ( · , t)),

where from Eq. (2.21) and Eq. (2.9))

cγ
j (z, t) = (−1)jN−1 tr((Rγ

t Vγ)jRγ
t ).

Hence, to bound ∥∂j
t gγ∥, it suffices to use bounds on the coefficients cγ

j . We will omit
the superscript γ to simplify notations. From Propositions 2.11 and 2.12, for fixed A > 0,

N |cj(E + iη, t)| ≲

η−1/2 + N−1/3+ε+Aη−1 N−2/3−A ≤ η ≤ 1

η−j−1 η ≥ 1,
(2.28)
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uniformly in |t| ≤ N c0 . Note that there is no dependence on j for η ≤ 1.
In the log-determinant case, we have that

Λ(f) =
∫ N100

γN

N Im f(y + iη) dη.

Evaluated at cj( · , t) with A = 2ε, we use Eq. (2.28) to obtain

∫ N100

γN

N |cj(E + iη, t)|dη ≲
∫ 1

γN

(η−1/2 + N−1/3+ε+Aη−1) dη +
∫ N100

1
η−j−1 dη

≲ 1.

For the remaining integrals, we need only the following consequence of Eq. (2.28).

N |cj(E + iη, t)| ≲ N
1
3 +ε+2A. (2.29)

Set A = 10ε in the eigenvalue counting case. This yields

∫ E2

E1
N |cj(y + iη, t)| dy ≲ N

1
3 +ε+2AN− 2

3 +ε = N− 1
3 +O(ε).

For inverse moments, we have Λ(cj(·, t)) = N−2l/3+1 Re c
(l−1)
j (E+iη). Let Γ be a contour

of radius N− 2
3 −2ε around E + iη. In this way, each cj is analytic on the interior of Γ, and

so we use Cauchy’s integral formula and Eq. (2.29) with A = 2ε to see that

N− 2
3 l+1|c(l−1)

j (E + iη)| ≤ (l − 1)!
2π

∮
Γ

N |cj(w)|
N

2
3 l|w − E − iη|l

|dw| ≲ N− 1
3 +O(ε).

In sum suppose that, for sequences aN and bN such that aN bN → 0, we have w.o.p.

∥∂j
t gγ(t)∥c0 ≲ N− j

2 aN , ∥G(j)∥∞ ≲ bj
N

In the proof so far, we have seen that the above conditions hold with the following values
of aN and bN for some constant C:

1. Log-determinant: aN = 1, bN = (log N)−1/4.

2. Eigenvalue counting: aN = N− 1
3 +O(ε), bN = (log N)C .

3. Inverse moments: aN = N− 1
3 +O(ε), bN = (log N)C .
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We apply Faà di Bruno’s formula to compute bounds for ∂k
t (G◦gγ)(t). Let Mk = {m ∈

Zk
≥0 : ∑k

j=1 jmj = k}, so that m+ = m1 + · · ·+ mk ≥ 1 for each m ∈Mk. Then for certain
combinatorial constants Ckm we have that, uniformly in |t| ≤ N c0 ,

|∂k
t (G ◦ gγ)(t)| ≤

∑
m∈Mk

Ckm|G(m+)(gγ(t))| ·
k∏

j=1
|g(j)(t)mj |

≲
∑

m∈Mk

Ckmb
m+
N

k∏
j=1

N−
jmj

2 a
mj

N = N− k
2
∑

m∈Mk

Ckm(aN bN )m+ ≲ N− k
2 aN bN ,

Hence, the conclusion in each case follows with δN = aN bN .

2.3.4 Conclusions for Wigner matrices

The last important result required to conclude Theorem 2.1 for Wigner matrices is eigen-
value non-concentration. That is, we require a result that indicates that the eigenvalues of
a Wigner matrix a reasonable separated from E with high probability.

We proceed with this as before: first establishing the result for Gaussian matrices, and
then using Proposition 2.14 to conclude that it still holds in the Wigner case.

Non-concentration

Let us introduce new notation

σ̌N = (log N)O(log log N). (2.30)

The specific non-concentration result required is the next proposition. The version of it
for G(U/O)E matrices appears in [JKOP20, Lemma 17].

Proposition 2.15. Let W ′
N be a Wigner matrix whose off-diagonal moments match GOE

or GUE to third order. Call its eigenvalues λ′
1, . . . , λ′

N . Let E ∈ R be such that |E − 2| ≲
N− 2

3 σ̌N . Then there exists a c1 such that, for each c0 ∈ (0, c1), there exists d > 0 such that,
for N large,

P( min
j=1,...,N

|λ′
j − E| ≤ N− 2

3 −c0) ≤ N−d. (2.31)

Proof. Define the eigenvalue counting function NW (E1, E2) = #{j : E1 ≤ λj(W ) ≤ E2}.
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The event in Eq. (2.31) has the form NW (E1, E2) ≥ 1. The first step is to approximate this
using the Stieltjes transform.

Let ε = 2c0 and define ℓ = 1
2N− 2

3 −ε, and η = N− 2
3 −9ε. Let E1, E2 ∈ R be such that

|E1 − 2|, |E2 − 2| ≲ N− 2
3 σ̌N and E2 − E1 ≥ 2ℓ.

A suitable approximation is given by Corollary 17.3 of [EY17] (based on the local law and
eigenvalue rigidity), which we apply twice with E = E1 and E2 respectively. Subtracting
the latter bounds from the former, this yields w.o.p. that

N

π

∫ E2−ℓ

E1+ℓ
Im sW (y + iη) dy − 2N−ε ≤ NW (E1, E2) ≤ N

π

∫ E2+ℓ

E1−ℓ
Im sW (y + iη) dy + 2N−ε.

Let E± = E ± 2N− 2
3 −c0 , and define the function

g(W ) = N

π

∫ E+−ℓ

E−+ℓ
Im sW (y + iη) dy,

Applying these bounds with (E1, E2) = (E−, E+) and (E− +2ℓ, E+−2ℓ), we conclude that,
w.o.p.,

NW (E− + 2ℓ, E+ − 2ℓ)− 2N−ε ≤ g(W ) ≤ NW (E−, E+) + 2N−ε. (2.32)

Let G be a smooth increasing function such that

G(x) =

1 if x ≥ 2/3,

0 if x ≤ 1/3.

Taking Q = G ◦ g and applying G to each side of Eq. (2.32), we then have that, w.o.p.,

1{NW (E− + 2ℓ, E+ − 2ℓ) ≥ 1} ≤ Q(W ) ≤ 1{NW (E−, E+) ≥ 1}.

Now we can use Propositions 2.9 and 2.14(2) to compare Q(W ′
N ) with Q(WN ), for WN

drawn from G(U/O)E with eigenvalues λj . For any A > 0, we have

P(min
j
|λ′

j − E| ≤ 2N− 2
3 −c0 − 2ℓ) = P{NW ′

N
(E− + 2ℓ, E+ − 2ℓ) ≥ 1}

≤ EQ(W ′
N ) + O(N−A)

≤ EQ(WN ) + O(N− 1
3 +O(ε))
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≤ P(min
j
|λj − E| ≤ 2N− 2

3 −c0) + O(N− 1
3 +O(ε))

≤ 1
2N−d + O(N−1/3+O(ε)) ≤ N−d.

At the last line we applied the non-concentration bound for G(U/O)E of [JKOP20, Lemma 17].
For N large, we have 2N− 2

3 −c0−2ℓ ≥ N−2/3−c0 and so the final bound Eq. (2.31) follows
from these inequalities.

The next lemma shows that non-concentration implies control of inverse power sums at
around their typical magnitude. The proof is by standard dyadic decomposition.

Lemma 2.16. Let {λj} be the eigenvalues of a Wigner matrix WN whose off-diagonal
moments match GOE or GUE to third order. Suppose that |E−2| ≤ N−2/3σ̌N . Then there
exist constants {Cr} such that for each ε > 0 small, with high probability we have

Sr(E) :=
N∑

j=1

1
|λj − E|r

≤

C1N if r = 1

CrN2r/3+(r+1)ε if r ≥ 2.

The bounds also hold for Sr(E′) uniformly in |E′−E| ≤ δ/2 with δ = N−2/3−ε, by increasing
Cr to 2rCr.

Proof. Let δ = N−2/3−ε and AN = {minj |E − λj | > δ}: by Proposition 2.15 this event has
probability at least 1−N−ε/2. We will work on event AN , and show that there the claims
hold w.o.p. On AN the interval I0 = [E − δ, E + δ] contains no eigenvalues. Consider the
‘coronae’ defined by Ik = {x ∈ R : 2k−1δ < |x − E| ≤ 2kδ} for 1 ≤ k ≤ k′ = min{k :
E − 2kδ ≤ 1}, and add two half-infinite intervals I−1 and Ik′+1 to obtain a disjoint cover of
R. We may then bound (on event AN )

Sr(E) ≤
k′∑

k=1

NWN
(Ik)

(2k−1δ)r
+ N

(2k′δ)r
. (2.33)

The semicircle density is bounded by
√

2− x1x≤2 and so ρsc([2 − a, 2 − b]) ≤ a3/2. The
lower endpoint of Ik is E − 2kδ ≥ 2− 2kδ − σ̌N N−2/3. Since σ̌

3/2
N ≤ N ε for large N ,

ρsc(Ik) ≤
√

2
(
(2kδ)3/2 + N ε−1

)
.
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Proposition 2.12 (ii) says that, with overwhelming probability, simultaneously for all k ≤
k′ = O(log N), we have

NWN
(Ik) ≤ Nρsc(Ik) + O(N ε) ≤

√
2N(2kδ)3/2 + CN ε.

Putting this into Eq. (2.33) and noting that 2k′
δ ∈ [1

2 , 3] we obtain w.o.p.

Sr(E) ≤ 2r+1/2N
k′∑
1

(2kδ)3/2−r + CN εδ−r + 2rN.

The sum may be bounded using

Nδ3/2−r
k′∑
1

2(3/2−r)k ≤

31/2N if r = 1

4N−3ε/2δ−r if r ≥ 2.

Observe that N εδ−r = N (2/3+ε)r+ε. For r = 1, this is o(N−1) and so S1(E) ≤ C1N on AN

w.o.p. For r ≥ 2 this is the dominant term, so that Sr(E) ≤ CrN2r/3+(r+1)ε.

The bounds also hold for Sr(E′) uniformly in |E′−E| ≤ δ/2, by increasing Cr to 2rCr.
Indeed, for such E′, on event AN we have |λj − E′| ≥ 1

2 |λj − E| for all j.

Log-determinant

We derive the central limit theorem for the log-determinant

LN (W ′
N ) = log|det(W ′

N − E)|

for a Wigner matrix W ′
N and E = EN = 2 + σN N−2/3. Recall the scaling constants µN , τN

from Eq. (2.3). Let WN be drawn from (scaled) GOE or GUE. From Theorem 2.1, which
we have already established for the Gaussian ensembles, we have

ĽN (WN ) = τ−1
N (LN (WN )− µN ) d→ N (0, 1). (2.34)

Proposition 2.17 (Log determinant CLT). Let W ′
N be a Wigner matrix whose off-diagonal

moments match GOE or GUE to third order. Let E = EN = 2 + σN N−2/3 with with
−γ ≤ σN ≪ log2 N .
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Then
τ−1

N (log|det(W ′
N − E)| − µN ) d→ N (0, 1). (2.35)

Proof. To rewrite the log-determinant in terms of an integral of the Stieltjes transform,
note that (d/ dη) log |λ− E − iη| = Im[(λ− E − iη)−1], which yields [TV12, eq. (46)]

LN (W ) = log|det(W − E − iN100)| −N

∫ N100

0
Im sW (E + iη) dη.

The uniform moment bounds W3 imply that

log|det(W − E − iN100)| = N log(N100) + OP(N−50).

Moreover, for each ε > 0 small, if we take γN = N− 2
3 −2ε, then non-concentration implies

that the contribution to the integral from η ≤ γN is negligible. Indeed, with λj = λj(WN ),

N Im sW (E + iη) = η
N∑

j=1

1
(λj − E)2 + η2 ≤ η

N∑
j=1

1
(λj − E)2 .

By Lemma 2.16 we thus have

∣∣∣N ∫ γN

0
Im sW (E + iη) dη

∣∣∣ ≤ 1
2γ2

N S2(E) = OP(γ2
N N

4
3 +3ε) = oP(1).

To summarize, if we define the Stieltjes functional

g(W ) = N

∫ N100

γN

Im sW (E + iη) dη,

set µ̄N = µN + N log(N100) and define

ξN (W ) = τ−1
N (g(WN )− µ̄N ),

then we have shown that ĽN (WN ) = ξN (WN ) + oP(1).
We carry out the Lindeberg swapping with g(W ). Let H+ : R → [0, 1] be a smooth

decreasing function such that

H+(x) =

1 if x ≤ 0

0 if x ≥ ηN ,
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and let H−(x) = H+(x − ηN ). For s ∈ R define G±
s (x) = H±(τ−1

N (x − µ̄N ) − s). One
verifies that

1{ξN (W ) ≤ s} ≤ G+
s (g(W )) ≤ 1{ξN (W ) ≤ s + ηN}. (2.36)

Setting Q+(W, s) = G+
s (g(W )), we obtain bound Eq. (2.13). Bound Eq. (2.14) follows

similarly using instead H− with Q−(W, s) = G−
s (g(W )).

Observe that ∥G±(j)
s ∥∞ ≲ (τN ηN )−j ≲ (log N)−j/4 if we choose ηN = τ

−1/2
N . Then

Proposition 2.14 (1) implies that Q±
s satisfy condition F with δN = (log N)−1/4. From

Proposition 2.10 we conclude that ξN (W ′
N ) and hence Ľ(W ′

N ) have the same limiting distri-
bution as ξN (WN ) and ĽN (WN ). Thus the validity of Theorem 2.1 for Gaussian ensembles
implies Eq. (2.35).



Chapter 3

Spin glass to paramagnetic
transition in the SSK model

This chapter presents results from [JKOP21]. Similarly to Chapter 2, it contains results
developed in coauthorship with Iain Johnstone, Alexei Onastki and Yegor Klochkov. Tech-
nical results about Gaussian and spiked matrices were mostly developed by coauthors, and
so such results are stated without proof, but with the relevant citations.

3.1 Introduction

We study the large-N behavior of the spherical integrals

Zα,N =
∫
SN−1

α

exp
{Nβ

α
· u∗Mαu

}
(du), (3.1)

where

Mα = J · ww∗ + WN (3.2)

is a random N ×N matrix such that WN is a real (when α = 1) or complex (when α = 2)
Wigner matrix; J is a constant from [0, 1); and w is an arbitrary unit-length vector from
CN if α = 1 or from RN if α = 2. In (3.1), SN−1

α denotes the unit sphere in CN if α = 1 or
in RN if α = 2, (du) denotes the normalized uniform measure over SN−1

α , and the symbol
∗ denotes combined transposition and complex conjugation. We investigate the limiting

43



44CHAPTER 3. SPIN GLASS TO PARAMAGNETIC TRANSITION IN THE SSK MODEL

distributions of the quantities

Fα,N = α

2N
log Zα,N (3.3)

for β in the so-called “critical regime” of β = 1 + O(N−1/3√log N).
Our original motivation stems from the fact that integrals (3.1) appear in the likelihood

ratio in statistical tests of spiked models in multivariate statistics, as seen in Eq. (1.3).
In such models, J and β play the roles of the size of the spike under the null and under
alternative hypotheses, respectively.

Recall from Section 1.5 that the Spherical Sherrington-Kirkpatrick model with Curie-
Weiss ferromagnetic interaction is a model of magnetism with Hamiltonian

HN (σ) = 1
2
( 1√

N

N∑
i,j=1

Aijσiσj + J

N

N∑
i,j=1

σiσj

)
, (3.4)

where σ ∈
√

NSN−1
2 , J ≥ 0 is known as the coupling constant, and A is a real symmetric

N × N matrix with zeroes on the diagonal and independent upper triangular entries Aij

with mean zero and variance 1.
Within this context, Fα,N can be interpreted as the free energy of the SSK model, where

A is the corresponding Wigner matrix.

3.1.1 Main result

In this chapter, we investigate the regime

β = 1 + bN−1/3√log N, 0 ≤ J < 1,

which, as discussed in Section 1.5, is the paramagnetic to spin-glass transition in the SSK
model.

We show that, in this case, Fα,N has fluctuations of order N/
√

log N . Moreover, as b

increases from −∞ to ∞, we describe the transition of the limiting distribution of Fα,N

from Gaussian to the Tracy-Widom.
Precisely, our main result is as follows.

Theorem 3.1. Consider Fα,N with α = 1 or α = 2, as defined in Eq. (3.1) – Eq. (3.3). Let
β = 1 + bN−1/3√log N for a constant b ∈ R and let 0 ≤ J < 1. Further let b+ = max{0, b}
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be the positive part of b. Then

N√
α
12 log N

(
Fα,N − F (β) + log N

12N

)
d−→ N (0, 1) +

√
3
α

b+ TW2/α, (3.5)

where TW2 and TW1 are the complex and real Tracy-Widom distributions, respectively,
independent from the N (0, 1), and where F (β) is as in Eq. (1.12), that is

F (β) =

β − 1
2 log β − 3

4 if b ≥ 0,

1
4β2 if b < 0.

3.2 Preliminary results

Contour integral representations. Our analysis is based on the now well known contour
integral representation of Zα,N , cf. [JKOP21, Section 9.6]

Zα,N = Cα,N

2πi

∫
K

exp{(N/α)G(z)} dz, G(z) = βz − 1
N

N∑
j=1

log(z − λj), (3.6)

where for now the integration contour K is the vertical line from γ − i∞ to γ + i∞ for any
constant γ > λ1,α, λ1 ≥ · · · ≥ λN are the eigenvalues of Mα, and

Cα,N = Γ(N/α)
(βN/α)N/α−1 .

Notice that the integrand is an analytic function in C \ (−∞, λ1] and that the integral
along the circular arc

CR,K = {z ∈ C : |z| = R, Re(z) ≤ K}

satisfies, for large enough R,

∣∣∣∣∫
CR,K

exp{(N/α)G(z)}dz

∣∣∣∣ ≤ 2πR · eNβK/α

(R/2)N/α

R→∞−−−−→ 0.

In particular, Cauchy’s theorem implies that K can be deformed without affecting the value
of the integral as long as λj are never intersected and as long as the resulting contour has
real part bounded above.
Log determinant CLT.
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In this section, we will use the following version of the log-determinant CLT. It is a
generalization of Theorem 2.1 to spiked Wigner matrices whose proof can be found in
[JKOP20, Proposition 29] but is omitted from this thesis:

Proposition 3.2 (Spiked log determinant CLT). Let W̃N be a subcritically-spiked Wigner
matrix. Let E = EN = 2 + σ̃N N−2/3 with σ̃N a monotone sequence for which σ̃N ≥ −C for
some positive constant C and σ̃N = o(log2 N). Then

τ−1
N (log|det(W̃N − E)| − µN ) d−→ N(0, 1). (3.7)

One-point correlation function. Let ρN be the level density or one-point function of
GUE. Then the expectation of a linear spectral statistic is given by

E
[
N−1

N∑
i=1

f(λi)
]

=
∫

f(λ)ρN (λ) dλ. (3.8)

A key tool in approximating such expectations will be a uniform bound, due to Götze
and Tikhomirov, for the deviation of the one-point function in GUE from the semicircle
density ρSC(x) = (2π)−1√4− x21|x|≤2. Indeed, [GT05, Theorem 1.2] shows the existence
of absolute constants γ, C > 0 such that for all |x| ≤ 2− γN−2/3,

|ρN (x)− ρSC(x)| ≤ C

N(4− x2) . (3.9)

In addition, the one-point function decays at least exponentially at the edge. Specifically,
as discussed in [JKOP21], for all s > −κ, for large enough N

ρN (2 + sN−2/3) ≤ C(κ)N−1/3e−2s . (3.10)

A similar bound holds at the negative edge, by symmetry. Corresponding bounds also hold
for ρSC.
Convergence at the edge. We will rely on the properties of the top eigenvalues of scaled
GUE or GOE. The celebrated papers [TW94; TW96; Die05] showed that, for each fixed j,
the scaled eigenvalues N2/3(λj − 2) converge in law to the jth Tracy-Widom distribution,
TW2/α,j . We need some further consequences of this convergence, along with the extension
of these consequences to Wigner matrices. The particular results are summarized in the
following lemma, which is proved in Section 3.5.2:
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Lemma 3.3. Let λ1 ≥ · · · ≥ λN be the eigenvalues of subcritically-spiked Wigner matrix
satisfying the conditions W1, W3 and W4 stated in Definition 1.2. Then

(i) For any ε > 0, there are Cε, Nε such that for N ≥ Nε, with probability at least 1− ε,

λ1 ≥ 2 + CεN−2/3.

(ii) For any fixed x ∈ R, there exists a constant Cx, such that

E#
{

j : λj ≥ 2− xN−2/3
}
≤ Cx.

(iii) For some cε, Nε and any N ≥ Nε, with probability at least 1− ε

λ1 − λ2 ≥ cεN−2/3. (3.11)

In other words, λ1 − λ2 = ΘP(N−2/3).

(iv) Suppose bN →∞ is such that bN = O(N ε) for any ε > 0. We then have a.a.s. that

#{j : λj > 2− bN N−2/3} ≳ b
3/2
N .

3.2.1 Proof strategy

The main derivations in this chapter revolve around the analysis of the integral∫
Kα

exp {(N/α)G(z)} dz.

The fluctuations of this term differ qualitatively for b < 0 and b ≥ 0, and are considered in
Sections 3.3 and 3.4 respectively. In both cases the proofs involve Laplace approximation,
but on different contours.
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Section 3.3: Negative critical case

We use the vertical contour of Eq. (3.6), and a deterministic choice for γ suffices. Indeed,
use the Stieltjes transform of the semicircle law to make the approximation

G′(z) = β − 1
N

N∑
j=1

1
z − λj

≈ β − z −
√

z2 − 4
2 .

When b < 0, the critical point of the approximation is γ = γ̂ + o(N−1+ε) for γ̂ = 2 +
b2N−2/3 log N and any small positive ε. Laplace approximation of the integral∫

K
exp {(N/α)[G(z)−G(γ̂)]} dz

requires bounds on derivatives G(l)(γ̂), for l = 1, 2, 3, stated in the key Lemma 3.6. Its
proof, in Section 3.5.4, relies on the asymptotic approximation of the one-point correlation
functions of the GUE developed by Götze and Tikhomirov [GT05]. Having established
that the fluctuations of Fα,N depend asymptotically only on G(γ̂), it remains only to apply
Proposition 3.2, conclude that Fα,N is asymptotically Gaussian, and compute the correct
centering and scaling constants.

Section 3.4: Non-negative critical case

When b ≥ 0, the deterministic approximation to G no longer has a critical point along the
real axis, and the approximation γ̂ fails. Indeed, Lemma 3.6 shows that G′(γ̂) is of greater
order than when b < 0, so G(z) oscillates too rapidly along the vertical contour through γ̂.

We consider first b > 0, and instead use the contour of Fig. 3.1, which has a vertical
part K3 through µ = (λ1 + λ2)/2 and a keyhole part K1 ∪ K2 extending horizontally from
µ and surrounding λ1. The integral turns out to be dominated by the keyhole part, with

1
2πi

∫
K1∪K2

exp {(N/α)G(z)} dz = exp
{

(N/α)Ĝ(λ1)− α− 1
3 log N + OP(log log N)

}
,

(3.12)
where

Ĝ(λ1) = βλ1 −
1
N

N∑
j=2

log(λ1 − λj). (3.13)
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The proof requires bounds on the derivatives Ĝ(l)(λ1), l = 1, 2 given in Lemma 3.10, and
proved in Section 3.5.4 by reduction to Ĝ(l)(2), which was studied in [JKOP20].

In the boundary case b = 0, the contributions of K3 and K1∪K2 are of the same order of
magnitude, so we consider instead the contour of the steepest descent. We establish upper
and lower bounds on the integral and recover the right-hand side of Eq. (3.12) in this case
also.

The analysis of Ĝ(λ1) is based on the approximation

N∑
j=2

log(λ1 − λj) =
N∑

j=1
log |2− λj |+ N(λ1 − 2) + OP(1). (3.14)

The right-hand side sum can be handled by Proposition 3.2. The λ1 terms in Eq. (3.13)
and Eq. (3.14) both contribute to Tracy-Widom fluctuations. The last part of the argu-
ment hinges on the asymptotic independence of λ1 and N−1∑N

j=1 log|2 − λj |. This result
is stated for Gaussian matrices in Proposition 3.4 and extended to Wigner matrices in
Proposition 3.17.

Independence of the largest eigenvalue from the linear statistic

The following results, established by Alexei Onatski and Yegor Klochkov in [JKOP21,
Proposition 5.1], is vital for understanding the limiting distribution in the b > 0 case.
We state it here and extend it to the Wigner case in Proposition 3.17.

Proposition 3.4. For GUE (α = 1) and GOE (α = 2) the random variables

ξ1N =
N/2− α−1

6 log N −
∑N

j=1 log |2− λj |√
α
3 log N

and ξ2N = N2/3(λ1 − 2)

are asymptotically independent in the sense that (ξ1N , ξ2N ) = (XN , YN ) + oP(1), where XN ,

and YN are independent OP(1) random variables.

The proof of this, which appears in [JKOP21, Section 5] relies on the tridiagonal repre-
sentation of GUE and GOE matrices — showing that YN asymptotically depends only on
a minor of order N1/3 log3 N while XN asymptotically depends only on the remainder of
the matrix.
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3.3 Negative-critical regime

For the case b < 0, we deform Kα so that it is the vertical line passing through γ̂, a point
in R that approximates the critical point γ of the function G(z). Note that

G′(z) = β − 1
N

N∑
j=1

1
z − λj

,

where 1
N

∑N
j=1

1
z−λα,j

is the negative of the Stieltjes transform of the spectral distribution of
Mα. For z > 2, it must converge to the negative of the Stieltjes transform of the semi-circle
law, that is to

−msc(z) = z −
√

z2 − 4
2 .

Solving β + msc(z) = 0 for z when β is given by

β = 1 + bN−1/3√log N, (3.15)

we obtain z = γ̂ + o(N−1+ε) for any ε > 0, where

γ̂ = 2 + b2N−2/3 log N.

Lemma 3.5. Suppose that b < 0. Then

∫ γ̂+i∞

γ̂−i∞
exp

{
N

α
[G(z)−G(γ̂)]

}
dz = 2

√
πα|b| i log1/4 N

N2/3 (1 + oP(1)) .

Proof. Changing variables z 7→ γ̂ + it log1/4 N
N2/3 , we represent the integral as

i log1/4 N

N2/3

∫ ∞

−∞
exp

{
N

α

[
G

(
γ̂ + it log1/4 N

N2/3

)
−G (γ̂)

]}
dt.

Using the Lagrange form of the remainder in the Taylor expansions of the real and imaginary
parts of G(z)−G(γ̂), we arrive at the following inequality

∣∣∣∣G(z)−G (γ̂)−G′ (γ̂) (z − γ̂)− 1
2G′′ (γ̂) (z − γ̂)2

∣∣∣∣ ≤ |z − γ̂|3

3 sup
ζ−γ̂∈iR

∣∣G′′′ (ζ)
∣∣ . (3.16)

Note that the event E0 = {γ̂ − λ1 > b2

2 N−2/3 log N} holds with probability arbitrarily close
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to one for all sufficiently large N . On E0, the latter supremum is no larger than |G′′′(γ̂)|
because, for any z ∈ (γ̂ − i∞, γ̂ + i∞), |z − λj |−3 ≤ (γ̂ − λj)−3. Hence, we have

∣∣∣∣G̃(t)−G′(γ̂)it log1/4 N

N2/3 + 1
2G′′(γ̂)t2 log1/2 N

N4/3

∣∣∣∣ ≤ |t|33
log3/4 N

N2 |G′′′ (γ̂)|,

where
G̃(t) ≡ G

(
γ̂ + it log1/4 N

N2/3

)
−G (γ̂) .

The following lemma is established for Gaussian matrices in [JKOP21, Section 6.2] and
extended to Wigner matrices in Section 3.5.4:

Lemma 3.6. Denote the l-th derivative of G(z) as G(l)(z). Then,

G′(γ̂) =

2bN−1/3 log1/2 N + oP
(
N−1/3 log−1/4 N

)
for b > 0,

oP
(
N−1/3 log−1/4 N

)
for b < 0,

G(l)(γ̂) = (−1)l (2l − 4)!
(l − 2)!

(
N1/3

2 |b| log1/2 N

)2l−3

(1 + oP(1)), b ̸= 0, l ≥ 2.

This lemma and the inequality that precedes it yield, for any fixed C > 0,

∫ C

−C
exp

{
N

α
G̃(t)

}
dt = (1 + oP (1))

∫ C

−C
exp

{
− t2

4α|b|

}
dt. (3.17)

Further, for any t ∈ R, by definition,

Re G̃(t) = − 1
N

N∑
j=1

log
∣∣∣∣∣1 + it log1/4 N

N2/3 (γ̂ − λj)

∣∣∣∣∣
= − 1

2N

N∑
j=1

log
(

1 + t2 log1/2 N

N4/3 (γ̂ − λj)2

)
.

We will use the elementary inequality log(1 + δ) ≥ δ/2 for δ ∈ [0, 1]. Conditionally on E0,
for all |t| ≤ tN ≡ b2

2 log3/4 N , we have

N Re G̃(t) < − t2 log1/2 N

4N4/3

∑N

j=1
(γ̂ − λj)−2 = − t2 log1/2 N

4N1/3 G′′(γ̂).
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Using Lemma 3.6, we conclude that for all |t| ≤ tN ≡ b2

2 log3/4 N ,

N Re G̃(t) < − t2

8|b|(1 + oP(1)).

Therefore,

∫ −C

−tN

∣∣∣∣exp
{

N

α
G̃(t)

}∣∣∣∣ dt+
∫ tN

C

∣∣∣∣exp
{

N

α
G̃(t)

}∣∣∣∣ dt < (1+oP(1))8|b|α
C

exp
{
− C2

8|b|α

}
. (3.18)

Since C can be chosen arbitrarily large, equations Eq. (3.17) and Eq. (3.18) yield

∫ γ̂+itN N−2/3 log1/4 N

γ̂−itN N−2/3 log1/4 N
exp

{
N

α
[G(z)−G(γ̂)]

}
dz = 2

√
πα|b| i log1/4 N

N2/3 (1 + oP(1)) . (3.19)

It remains to show that the contribution of the remaining parts of the integral is negli-
gible. Clearly, it is sufficient to prove that∫ ∞

tN

∣∣∣∣exp
{

N

α
G̃(t)

}∣∣∣∣ dt = oP(N−k) (3.20)

for arbitrarily large fixed k. Note that Re G̃(t) is a strictly decreasing function of t ∈ [tN ,∞).
Therefore,

∫ N2

tN

∣∣∣∣exp
{

N

α
G̃(t)

}∣∣∣∣ dt < N2 exp
{

N

α
Re G̃(tN )

}
< N2 exp

{
−|b|

3 log3/2 N

32α
(1 + oP(1))

}
= oP(N−k)

for arbitrarily large fixed k. For t > N2, on the event (γ̂ − λN )2 < C̄ that holds with high
probability for some constant C̄, we have

N Re G̃(t) = −1
2
∑N

j=1
log

(
1 + t2 log1/2 N

N4/3(γ̂ − λj)2

)

≤ −N

2 log
(

t2 log1/2 N

N4/3C̄

)
.
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Therefore,

∫ ∞

N2

∣∣∣∣exp
{

N

α
G̃(t)

}∣∣∣∣ dt <

∫ ∞

N2

(
t2 log1/2 N

N4/3C̄

)− N
2α

(1+oP(1))

dt = oP(N−k)

for arbitrarily large fixed k as well. Hence, Eq. (3.20) indeed holds.

Now we are ready to prove the following theorem. Recall that Fα,N = α
2N log Zα,N ,

where Zα,N is as defined in Eq. (3.6). We will omit subscript α from the notations, to
simplify them.

Theorem 3.7 (Negative-critical regime). Suppose β = 1 + bN−1/3 log1/2 N with b < 0.
Then,

N√
α
12 log N

(
FN −

1
4β2 + log N

12N

)
d−→ N (0, 1).

Proof. After rearranging Eq. (3.6), we have

2NFN = α log CN + NG(γ̂) + α log 1
2πi

∫ γ̂+i∞

γ̂−i∞
exp

{
N

α
[G(z)−G (γ̂)]

}
dz.

For the first term, using Stirling’s formula,

α log CN = α log
√

2π(N/α)N/α−1/2e−N/α

(Nβ/α)N/α−1 +o(1) = −N (1 + log β)+ α

2 log N +O(1). (3.21)

For the second term we have

NG(γ̂) = Nβγ̂ −
N∑

j=1
log(γ̂ − λj)

= 2βN + b2N1/3 log N + b3 log3/2 N −
∑N

j=1
log(γ̂ − λj).

For the third term, using Lemma 3.5,

α log 1
2πi

∫ γ̂−i∞

γ̂−i∞
exp

{
N

α
[G(z)−G(γ̂)]

}
dz = −2α

3 log N + OP(log log N).

Combining the three terms, we obtain

2NFN = N(−1− log β + 2β) + b2N1/3 log N + b3 log3/2 N − α

6 log N



54CHAPTER 3. SPIN GLASS TO PARAMAGNETIC TRANSITION IN THE SSK MODEL

−
N∑

j=1
log(γ̂ − λj) + OP(log log N).

Let

NξN ≡
N∑

j=1
log(γ̂ − λj)− N

2 − b2N1/3 log N + 2
3 |b|

3 log3/2 N + α− 1
6 log N.

On E0, we have that λ1 ≤ γ̂, and so NξN a.a.s. satisfies the conditions of Proposition 3.2
with σN = b2 log N . This means that

NξN /

√
α

3 log N
d−→ N (0, 1). (3.22)

Combining the last two displays and noting that

b3 log3/2 N

N
= (β − 1)3,

we get (for b < 0)

2NFN = N

(
2β − log β − 3

2 + 1
3(β − 1)3 − log N

6N

)
−NξN + OP (log log N) .

Using the Taylor expansion

log β = (β − 1)− 1
2(β − 1)2 + 1

3(β − 1)3 + o(N−1)

in the previous display, we obtain

2NFN = N

2 β2 − log N

6 −NξN + OP (log log N) . (3.23)

On the other hand, recalling Eq. (3.22) yields Theorem 3.7 and hence the negative critical
part of Theorem 3.1.

3.4 Positive-critical regime

The vertical contour passing through γ̂ will not work when b ≥ 0 because G′(γ̂) becomes
non-negligible. As a result, the function G(z) oscillates quickly along the vertical contour
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Re(z)

Im(z)

λ1λN
. . .

λ2
×

µ K1
K+

2

K+
3

K−
3

Figure 3.1: Contour of integration for positive b

near γ̂. Instead we use contours crossing the real axis closer to λ1. To this end, we consider
the nonsingular part of G at λ1 and define

Ĝ(λ1) = βλ1 −
1
N

N∑
j=2

log(λ1 − λj).

Proposition 3.8. If b ≥ 0, then for both α = 1, 2,

1
2πi

∫
K

exp{(N/α)G(z)} dz = exp
{

(N/α)Ĝ(λ1)− (α− 1)
3 log N + OP(log log N)

}
.

For b > 0, we consider the vertical “keyhole contour” K, Fig. 3.1, which is symmetric
around the real axis and has the following form above the axis:

K+ = K+
1 ∪K+

2 ∪K+
3 ,

with K+
1 being a semi-circle with center at λ1 and small radius ε, K+

2 being a horizontal
segment connecting µ = λ1+λ2

2 and λ1 − ε, and K+
3 being a vertical ray starting from µ.

In the complex case, α = 1, the integrand is analytic away from λ1, . . . , λN , and so
the contributions of K+

2 and K−
2 cancel. On the other hand, in the real case, α = 2,

exp {(N/α)G(z)} has a square-root-type singularity at z = λ1. Hence, the contribution of
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K1 to the integral
∫
K exp {(N/α)G(z)} dz converges to zero as ε→ 0. To summarize, let

IN = 1
2πi

∫
K

exp{(N/α)G(z)} dz, IN,k = 1
2πi

∫
Kk

exp{(N/α)G(z)} dz.

Thus, as ε→ 0 we have for both α = 1, 2

IN = IN,α + IN,3.

Let
AN,α = exp{(N/α)Ĝ(λ1)− α− 1

3 log N}.

When b > 0, we establish Proposition 3.8 in Section 3.4.1 by showing that

IN,α = AN,α exp{OP(log log N)}, IN,3 = oP(IN,α).

The b = 0 case is more delicate. The keyhole contour yields both IN,α, IN,3 = AN,α exp{OP(1)}
which suffices for the upper bound for IN . Since the OP(1) terms are in general complex,
some cancellation between IN,α and IN,3 cannot be excluded, so further argument is needed
for the lower bound. In Section 3.4.2 a separate argument using the steepest descent contour
yields the required lower bound.

The following lemmas established for Gaussian matrices in [JKOP20, Proposition 4] and
[JKOP21, Lemma 4.2] and extended to Wigner matrices in Sections 3.5.4 and 3.5.5 provides
bounds for Ĝ′(λ1) and Ĝ′′(λ1) used throughout the argument.

Lemma 3.9. Let λ1 ≥ · · · ≥ λN be the eigenvalues of a critically-spiked Gaussian matrix
and let C ∈ R. Then

1
N

N∑
j=1

1
2 + λN−2/3 − λj

= 1 + OP(N−1/3), and 1
N

N∑
j=1

1
(2 + λN−2/3 − λj)2 = OP(N1/3).

Lemma 3.10. Let λ1 ≥ · · · ≥ λN be the eigenvalues of a subcritially spiked Wigner matrix.
Then,

1
N

N∑
j=2

1
λ1 − λj

= 1 + OP
(
N−1/3

)
, and 1

N

N∑
j=2

1
(λ1 − λj)2 = OP

(
N1/3

)
.
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3.4.1 Proof of Proposition 3.8 for b > 0

Lemma 3.11. Suppose that b ≥ 0. Then for α = 1, 2 we have

IN,α = AN,α exp{OP(log log N)}.

Proof. In the complex case, Cauchy’s integral formula yields IN,1 = exp{NĜ(λ1)} ≡ AN,1,
since K1 encircles only λ1. The rest of this proof is devoted to the real case. First, consider

1
2πi

∫
K+

2 ∪K−
2

exp{(N/2)G(z)} dz = 1
2πi

∫ µ

λ1

−i√
λ1 − y

exp

Nβy

2 − 1
2

N∑
j=2

log(y − λj)

 dy

+ 1
2πi

∫ λ1

µ

i√
λ1 − y

exp

Nβy

2 − 1
2

N∑
j=2

log(y − λj)

 dy.

Changing variables y 7→ x = λ1 − y, we obtain

1
2πi

∫
K+

2 ∪K−
2

exp{(N/2)G(z)} dz = 1
π

∫ λ1−λ2
2

0

1√
x

exp

Nβ(λ1 − x)
2 − 1

2

N∑
j=2

log(λ1 − λj − x)

 dx

= exp
{

(N/2)Ĝ(λ1)
}
I,

where

I = 1
π

∫ λ1−λ2
2

0

1√
x

exp

−N

2 βx− 1
2

N∑
j=2

log
(

1− x

λ1 − λj

)dx.

Since 0 ≤ − log(1− y)− y ≤ y2 for 0 ≤ y ≤ 1
2 , we have for some ξ ∈ [0, 1],

−Nβx−
N∑

j=2
log

(
1− x

λ1 − λj

)
= −Nβx +

N∑
j=2

x

λ1 − λj
+ ξ

N∑
j=2

x2

(λ1 − λj)2

= N2/3x(−b
√

log N + ω1N ) + ξN4/3x2ω+
2N ,

with random variables ω1N and ω+
2N > 0 both being OP(1) from Lemma 3.10. Setting

y = N2/3x and θ3 = N2/3(λ1 − λ2)/2 = ΘP(1) (by Eq. (3.11)) and noting also that
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ω1N y + ξω+
2N y2 is uniformly OP(1) for 0 ≤ y ≤ θ3, we arrive at

I = eOP(1)

N1/3

∫ θ3

0
exp{−1

2by
√

log N} dy
√

y
=


eOP(1)

N1/3
1

b1/2 log1/4 N
b > 0

eOP(1)

N1/3 b = 0.

In what follows, we define G(µ) = limt→+0 G(µ + it), i.e., as a continuation from the
upper-half plane, so that we have log(λ1 − µ) = log |λ1 − µ|+ πi.

Lemma 3.12. For b ≥ 0, we have |IN,3| ≤ AN,α exp
{
−θN

b
√

log N
α + OP(1)

}
, where θN =

N2/3(λ1 − λ2)/2 is a non-negative ΘP(1) variable.

Proof. It suffices to bound

I+
N,3 = 1

2πi

∫
K+

3

exp{(N/α)G(z)}dz = 1
2π

∫ ∞

0
exp{(N/α)G(µ + it)}dz,

as the analysis for K−
3 is analogous using G(z̄) = G(z). Let G̃(t) = G (µ + it) − G(µ). We

have
|I+

N,3| ≤
1

2π
exp{(N/α)Ĝ(λ1)}|JN |KN , (3.24)

with

JN = exp{−(N/α)[Ĝ(λ1)−G(µ)]}, KN =
∫ ∞

0
exp{(N/α) Re[G̃(t)]}dt.

First we compare Ĝ(λ1) and G(µ). Since log(µ + i0 − λ1) = log[(λ1 − λ2)/2] + iπ, we
have

N [Ĝ(λ1)−G(µ)] = Nβ(λ1 − µ) + log λ1 − λ2
2 + πi +

N∑
j=2

log
(

1− 1
2

λ1 − λ2
λ1 − λj

)
.

For 0 ≤ t ≤ 1 we have that | log(1− t/2) + t/2| ≤ t2. From Lemma 3.10 we then have

N∑
j=2

log
(

1− 1
2

λ1 − λ2
λ1 − λj

)
= −N(λ1 − λ2)

2 [1 + OP(N−1/3)] + N(λ1 − λ2)2OP(N1/3).

In addition, 2θN := N2/3(λ1 − λ2) is a ΘP(1) variable, and so log(λ1 − λ2) = −2
3 log N +
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OP(1), and

N [Ĝ(λ1)−G(µ)] = Nβ

2 (λ1 − λ2)− 2
3 log N − N

2 (λ1 − λ2) + OP(1)

= N(λ1 − λ2)
2

b
√

log N

N1/3 − 2
3 log N + OP(1)

= −2
3 log N + θN b

√
log N + OP(1). (3.25)

Thus
|JN | = exp{(2/3α) log N − θN

b
√

log N

α
+ OP(1)}. (3.26)

We turn to KN in Eq. (3.24). Fix k > α and let WN = maxj≤k N2/3|λj−µ|. Neglecting
negative terms, we have

N Re G̃(t) = −1
2

N∑
j=1

log
(

1 + t2

(µ− λj)2

)
≤ −k

2 log
(

1 + t2

W 2
N N−4/3

)
.

Since WN is a ΘP(1) variable from TW convergence and Lemma 3.3 (iii), we have

KN ≤
∫ +∞

0

(
1 + W −2

N N4/3t2
)−k/2α

dt (3.27)

= WN N−2/3
∫ ∞

0
(1 + s2)−k/2α dt = exp

{
−2

3 log N + OP(1)
}

. (3.28)

Combining Eq. (3.26) and Eq. (3.27), for each case α = 1, 2 we arrive at

|JN |KN ≤ exp{−(α− 1)
3 log N − θN

b
√

log N

α
+ OP(1)}.

Together with Eq. (3.24), this yields the lemma.

3.4.2 The case b = 0

In this section we use the steepest descent contour to show that IN ≥ AN,α exp{OP(log log N)}.
When combined with the upper bound already established in Lemma 3.11, this yields Propo-
sition 3.8 for b = 0.

Let Γ denote the contour of steepest descent of G(z). For z = x + iy ∈ Γ,

0 = Im[G(z)] = y − 1
N

N∑
j=1

arg((x− λj) + iy).
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Re(z)

Γ

Γ0

λ1

z0

z0

Figure 3.2: Curve of steepest descent of G(z) near λ1.

From this equation, we observe that Γ is symmetric around the real axis.

Next, observe that for a fixed imaginary part y > 0, arg((x−λj)+iy) is strictly decreasing
with x. Hence, G(x+iy) can have at most one root for any positive y. By symmetry around
the real axis, this also holds for y < 0. This means that it is possible to parameterise

Γ = {Γ(t) : 0 < t < 1}

so that Im Γ(t) is increasing in t.

Moreover, we can see that Γ(0+) = −∞− iπ and Γ(1−) = −∞+ iπ. Therefore, Γ must
have upper-bounded real part, and so∫

K
exp{(N/α)G(z)} dz =

∫
Γ

exp{(N/α)G(z)}dz.

To continue, we need one last result about Γ, which formalizes the notion that Γ passes
above λ1 at a distance of roughly N−2/3:

Lemma 3.13. The function

f(y) = Im[G(λ1 + iy)] = y − π

2N
− 1

N

N∑
j=2

arctan
( y

λ1 − λj

)
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has a unique positive root y0. If aN →∞ such that aN = o(N2/3), then a.a.s.

N−2/3

aN
≤ y0 ≤ N−2/3aN . (3.29)

Proof. Notice that, over [0,∞), f is convex with f(0) = −π/(2N) and limy→∞ f(y) = ∞.
In particular, this means that it has a unique positive root, which we will call y0.

We will show that f(N−2/3a−1
N ) < 0 < f(N−2/3aN ) a.a.s., which implies Eq. (3.29).

Let y− = N−2/3a−1
N . Using arctan(x) ≥ x − x2/4 for x ≥ 0 and then Lemma 3.10, we

have

f(y−) ≤ y−
(
1− 1

N

N∑
j=2

1
λ1 − λj

)
+ y2

−
4N

N∑
j=1

1
(λ1 − λj)2 −

π

2N

= N−2/3a−1
N OP(N−1/3) + 1

4N−4/3a−2
N OP(N1/3)− π

2N

= − π

2N
+ oP(N−1)

Thus f(y−) < 0 a.a.s.

Next, set y+ = N−2/3aN . Now, some y+/(λ1 − λj) terms will diverge to ∞ and so the
linear approximation to arctan is not helpful. To handle these cases, we define

j∗ = max
{

j : y+
λ1 − λj

> 1 + π

2
}

= #
{

j : λj > λ1 −
(
1 + π

2
)−1

aN N−2/3
}

.

The significance of the 1 + π/2 term is that x − arctan x ≥ 1 for x exceeding 1 + π/2,
and hence

arctan
( y+

λ1 − λj

)
≤ y+

λ1 − λj
− 1j≤j∗ .

We observe that, since λ1 − 2 ∼ N−2/3 ≪ aN N−2/3, we have a.a.s.

j∗ ≥ j0 = #
{

j : λj > 2− 1
3aN N−2/3

}
.

Using part (iv) of Lemma 3.3 we have a.a.s. that j∗ ≥ j0 > Ca
3/2
n for some C > 0.
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Consequently

f(y+) = y+ −
1
N

N∑
j=2

arctan
( y+

λ1 − λj

)
− π

2N

≥ y+ −
1
N

N∑
j=2

y+
λ1 − λj

+ j∗

N
− π

2N

≥ OP
(aN

N

)
+ j∗

N
− π

2N
.

Since, a.a.s., j∗ > Ca
3/2
N , this means that f(y+) > 0 for large enough N .

We have thus shown that for large N , with high probability, f(y−) < 0 < f(y+), and
the result follows.

Having established necessary results about Γ, we also define z0 = λ1 + iy0 and

Γ0 = {z ∈ Γ : |Im(z)| ≤ y0}.

Since Γ can be parameterized with increasing imaginary part, this curve is connected.
Using the fact that G(z) is purely real on Γ together with the parameterisation of Γ

with increasing imaginary part, we have that

1
2πi

∫
Γ

e(N/α)[G(z)−Ĝ(λ1)] dz ≥ 1
2π

∫
Γ0

e(N/α) Re[G(z)−Ĝ(λ1)] dy

≥ y0
π

e(N/α) Re[G(z0)−Ĝ(λ1)], (3.30)

since the integrand is minimized on Γ0 at the endpoints z0, z̄0 = λ1 ± iy0.
Appealing again to Lemma 3.10, we obtain for α = 1, 2

log y0 + (N/α) Re[G(z0)− Ĝ(λ1)] = log y0 −
1
α

log y0 −
1

2α

N∑
j=2

log
(
1 + y2

0
(λ1 − λj)2

)

≥
(
1− 1

α

)
log y0 −

y2
0

2α

N∑
j=2

1
(λ1 − λj)2

=
(α− 1

2
)

log y0 −
y2

0
2α

OP(N4/3). (3.31)

≥ −
(α− 1

3
)

log N + OP(log log N),
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since N−2/3/ log N ≤ y0 ≤ N−2/3√log log N a.a.s. according to Lemma 3.13.
Inserting this bound into Eq. (3.30), we obtain

1
2πi

∫
Γ

e(N/α)G(z) dz ≥ exp
{

(N/α)Ĝ(λ1)−
(α− 1

3
)

log N + OP(log log N)
}

,

which is the lower bound required to complete the proof.

3.4.3 Limiting law in the positive-critical regime

Theorem 3.14. Suppose that β = 1 + bN−1/3 log1/2 N with b ≥ 0. Then

N√
α
12 log N

(
FN − β + 1

2 log β + 3
4 + log N

12N

)
d−→ N (0, 1) +

√
3
α

b TW2/α

with independent N (0, 1) and TW2/α.

Proof. From Eq. (3.6) and Proposition 3.8 we have

2NFN = α log CN + NĜ(λ1)− α(α− 1)
3 log N + OP(log log N). (3.32)

The behavior of NĜ(λ1) is governed by the approximation

N∑
j=2

log(λ1 − λj) =
N∑

j=2
log |2− λj |+ N(λ1 − 2) + OP(1). (3.33)

To verify this, let ∆N denote the difference between right- and left-hand sides, without the
error term. We set

∆N = SN + N(2− λ1)
[ 1

N

N∑
2

1
λ1 − λj

− 1
]

SN =
N∑

j=2
XN,j , XN,j = log |2− λj | − log(λ1 − λj)− 2− λ1

λ1 − λj
.

The second term of ∆N is OP(1) from Lemma 3.10 and the Tracy-Widom limit. For
each fixed j, XN,j = OP(1) since both |2 − λj | and λ1 − λj are ΘP(N−2/3), the latter by
Lemma 3.3, part (iii).

To show that SN is OP(1), we use convergence criterion C2 of Section 1.8. First, we
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argue that for each ε > 0, there exist k = k(ε), C = C(ε) > 0 such that the event

Eε,N = {λ1 ≤ 2 + CN−2/3, λk ≤ 2− CN−2/3}

has P (Eε,N ) > 1 − ε for large enough N . Indeed, Tracy-Widom convergence provides Cε

such that λ1 ≤ 2 + CεN−2/3 with probability at least 1 − ε/2. Lemma 3.3 part (ii) and
Markov’s inequality show that P (λk ≥ 2 − xN−2/3) ≤ Cx/k. With x = Cε, this can be
made at most ε/2 by choosing k(ε) = ⌈2Cx/ε⌉. Hence P (Eε,N ) ≥ 1− ε.

Let SN,1(ε), SN,2(ε) denote the sum in SN restricted to j < k(ε) and j ≥ k(ε) respec-
tively. On Eε,N , the sum SN,1(ε) has a finite number of OP(1) terms and so is itself OP(1).
Also on Eε,N , observe that (2−λ1)/(λ1−λj) ≥ −1

2 for all j ≥ k. Since | log(1+x)−x| ≤ C1x2

for x > −1
2 and some C1 > 0, we have the bound

|SN,2(ε)| ≤ C1(λ1 − 2)2
N∑

j=2

1
(λ1 − λj)2 = OP(1),

from Lemma 3.10 and the Tracy-Widom law. This completes the proof of Eq. (3.33).

Returning to NĜ(λ1), using Eq. (3.33) and β − 1 = bN−1/3 log1/2 N , we obtain the key
decomposition

NĜ(λ1) = 2Nβ + Nβ(λ1 − 2)−
N∑

j=2
log(λ1 − λj) (3.34)

= 2Nβ −
N∑
2

log |2− λj |+ b
√

log NN2/3(λ1 − 2) + OP(1)

= 2Nβ −
N∑
1

log |2− λj | −
2
3 log N + b

√
log Nξ2N + OP(1), (3.35)

after adding and subtracting log |2−λ1| = −2
3 log N+OP(1) and setting ξ2N = N2/3 (λ1 − 2).

Combining this with Eq. (3.32) and Eq. (3.21), we obtain

2NFN = N(−1− log β + 2β)− α

6 log N −
N∑
1

log |2− λj |+ b
√

log Nξ2N + OP(log log N),

where we note that the coefficient of log N , namely 1
2α − 2

3 −
1
3α(α − 1), reduces to −α

6

when α = 1 or 2.
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Let

Nξ̌N =
N∑

j=1
log|2− λj | −

N

2 + α− 1
6 log N.

Combining the two previous displays we obtain (compare Eq. (3.23))

2NFN = N

(
−3

2 − log β + 2β

)
− log N

6 −Nξ̌N + b
√

log Nξ2N + OP(log log N).

Now rewrite this as

NFN = N

(
−3

4 −
1
2 log β + β − log N

12N

)
+
√

α

12 log N ξ1N + b

2
√

log N ξ2N + OP(log log N),

(3.36)

where we set ξ1N = −Nξ̌N /
√

α
3 log N .

By Proposition 3.17, (ξ1N , ξ2N ) are asymptotically independent and ξ1N
d−→ N (0, 1),

whereas ξ2N
d−→ TW2/α . More precisely, there exist independent variables ζ1N , ζ2N such

that ξjN = ζjN +oP(1). In this case marginal convergence ξjN
d→ ξj suffices for convergence

ξ1N + cξ2N
d→ ξ1 + cξ2. This completes the proof of Theorem 3.14 and thus of Theorem 3.1

in the positive critical case.

3.5 Extension to spiked Wigner matrices

Here we extend the results that were proven above for the G(U/O)E cases to the Wigner case
with a subcritical spike. The general strategy is much the same as in Section 2.3. Indeed, in
this section we will make extensive use of Proposition 2.14 generally, and Proposition 2.10 to
conclude results about the joint convergence of the largest eigenvalue and log-determinant.
Throughout the remainder of this chapter we denote by WN a matrix from GUE (α = 1)
or GOE (α = 2) and by W ′

N the corresponding real (α = 1) or complex (α = 2) Wigner
matrix, that satisfies a specified subset of the conditions W1–W4.

In order to complete the proofs we also need to add a subcritical spike. For fixed
J ∈ [0, 1), consider the matrix

MN = W ′
N + Jvv∗, (3.37)

where v is arbitrary unit vector from CN (from RN if α = 2). Below we denote by
λ1 ≥ · · · ≥ λN the eigenvalues of WN , by λ′

1 ≥ · · · ≥ λ′
N the eigenvalues of WN , and by
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µ1 ≥ · · · ≥ µN the eigenvalues of MN . We transfer the properties of W ′
N to MN using the

Cauchy interlacing theorem

µ1 ≥ λ′
1 ≥ µ2 ≥ λ′

2 ≥ · · · ≥ µN ≥ λ′
N .

In addition, we will rely on the stickiness of the top eigenvalues of W ′
N to its deformed

counterpart MN .

Proposition 3.15 (Stickiness of top eigenvalues). Suppose W ′
N satisfies W1 and W3 and

fix arbitrary ε ∈ (0, 1/6). Let J ∈ (0, 1) and MN = W ′
N + Jvv∗ for a unit vector v. Then,

w.o.p.,
max
j≤Nε

|µj − λ′
j | = O(N−1+2ε).

The above bound is stated in [KY13b] for a constant number of top eigenvalues and
extended to up to N ε eigenvalues in [JKOP21, Section A.2].

3.5.1 Distribution of largest eigenvalues

Proposition 3.16. Let µ1 ≥ · · · ≥ µN be the eigenvalues of a subcritically-spiked MN as
in Eq. (3.37) and the Wigner matrix W ′

N satisfies W1-4. Then, for any k ∈ Z>0,

(
N

2
3 (µ1 − 2), . . . , N

2
3 (µk − 2)

) d−→ (TW 2
α

,1, . . . , TW 2
α

,k),

where (TW 2
α

,j)1≤j≤k is the joint limiting distribution of the k largest eigenvalues for a GUE
(α = 1) or GOE (α = 2).

Proof. Let ξN,j(W ) = N2/3(λj(W )− 2). The convergence in distribution of ξN = ξN (WN )
to ξ = (TW 2

α
,1, . . . , TW 2

α
,k) is established, e.g., in [AGZ09, Theorem 4.5.42]. We use the

swapping corollary Proposition 2.10 to carry this over to convergence of ξ′
N = ξN (W ′

N ): the
key step is approximation by the Stieltjes functional g(W, E) below, and then use of the
derivative bounds in Proposition 2.14.

Introducing the rescaling E(s) = 2 + N−2/3s, we may write

1{ξN,j(W ) ≥ s} = 1{NW (E(s),∞) ≥ j}, (3.38)

where NW (E,∞) denotes the number of eigenvalues of W that fall into the inverval (E,∞).
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Let E∞ = 2 + 2N−2/3+ε, η = N−2/3−9ε and

g(W, E) = N

π

∫ E∞

E
Im sW (y + iη) dy.

Under our assumptions on W = WN , W ′
N , Corollary 17.3 of [EY17] says that for |E − 2| ≤

N−2/3+ε and ℓ = 1
2N−2/3−ε, and with overwhelming probability, we have inequalities

NW (E + ℓ,∞)−N−ε ≤ g(W, E) ≤ NW (E − ℓ,∞) + N−ε. (3.39)

Let Gj be a smooth increasing function such that

Gj(x) =

1 if x ≥ j − 1/3,

0 if x ≤ j − 2/3.

From Eq. (3.39) we have w.o.p. for W = WN and W ′
N that

1{NW (E + ℓ,∞) ≥ j} ≤ Gj(g(W, E)) ≤ 1{NW (E − ℓ,∞) ≥ j}.

Applying this with E = E(sj) + ℓ along with Eq. (3.38), we obtain

1{ξN,j(W ) ≥ sj} ≥ Gj(g(W, E(sj) + ℓ)) ≥ 1{ξN,j(W ) ≥ sj + N−ε}. (3.40)

Setting Q+
j (W, s) = 1−Gj(g(W, E(sj)+ℓ)), we obtain bounds Eq. (2.13). Bounds Eq. (2.14)

follow analogously with Q−
j (W, s) = 1−Gj(g(W, E(sj)− ℓ)).

The functions Q±
j (·, s) satisfy Proposition 2.14 (2) with δj,N = N−1/3+O(ε) and hence

also condition F. Consequently the joint convergence for ξ′
N = ξN (W ′

N ) follows from Propo-
sition 2.10.

The result follows for subcritically-spiked Wigner matrix MN = W ′
N + Jvv∗ applying

Proposition 3.15 so that

(
N

2
3 (µ1 − 2), . . . , N

2
3 (µk − 2)

)
=
(
N

2
3 (λ′

1 − 2), . . . , N
2
3 (λ′

N − 2)
)

+ oP(N−1/3+2ε).

3.5.2 Proof of Lemma 3.3

Let WN , W ′
N , MN be as described in the introduction to Section 3.5. This proof will proceed

by proving each part first for WN , and then extending the result to W ′
N and last to MN .



68CHAPTER 3. SPIN GLASS TO PARAMAGNETIC TRANSITION IN THE SSK MODEL

Part (i): For each of WN , W ′
N and MN , this follows from the convergence of N2/3(λ1 − 2)

to TW2/α shown in Proposition 3.16.

Part (ii): For GUE, this follows from the one-point function decay bound Eq. (3.10) and
Eq. (3.8) applied to the counting function statistic built from fN (λ) = 1{λ ≥ 2− xN−1/3}.
The extension to GOE follows from the comparison bound Corollary 2.6.

To extend this result to W ′
N , we re-use several definitions from the proof of Proposi-

tion 3.16. In particular, for ε > 0, E∞ = 2 + 2N−2/3+ε and η = N−2/3−9ε, define

g(W, E) = N

∫ E∞

E
Im sW (u+ ∈ η) dy.

Following with E = 2− xN−2/3 − ℓ, we have that, w.o.p.,

NW ′
N

(2− xN−2/3,∞) ≤ g(W ′
N , 2− xN−2/3 − ℓ),

g(WN , 2− xN−2/3 − ℓ) ≤ NWN
(2− xN−2/3 − 2ℓ,∞).

Moreover, since each of NW ′
N

(2 − xN−2/3) and NWN
(2 − xN−2/3) are almost surely

bounded by N , it follows that, for any A > 0,

ENW ′
N

(2− xN−2/3,∞) ≤ Eg(W ′
N , 2− xN−2/3) + O(N−A),

Eg(WN , 2− xN−2/3 − ℓ) ≤ ENWN
(2− xN−2/3 − 2ℓ,∞) + O(N−A).

Last, we apply Proposition 2.14 part (3) to conclude that g satisfies condition F (δN )
with δN = O(N−1/3 + O(ε)) and so, by Proposition 2.9,

Eg(W ′
N , 2− xN−2/3) ≤ Eg(WN , 2− xN−2/3) + O(N−1/3+O(ε)).

This completes the inequalities and renders

ENW ′
N

(2− xN−2/3,∞) ≤ ENWN
(2− (x + N−ε)N−2/3,∞) + o(1)

≲ ENWN
(2− (x + 1)N−2/3,∞)

≤ Cx+1
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By interlacing of the eigenvalues of W ′
N and Mn, we have that

ENMN
(2− xN−2/3,∞) ≤ E[NW ′

N
(2− xN−2/3,∞) + 1] ≲ Cx+1 + 1.

Part (iii): Consider the operator

H2/α = − d2

dx2 + x +
√

2αB′(x),

where B′(x) is the derivative of the Brownian motion on (0,∞), and the operator acts
on some Hilbert space L∗, which consists of continuous functions supported on (0,∞), see
p. 308 in [AGZ09]. The following result is Theorem 4.5.42 in [AGZ09] for the special case
of just the two top eigenvalues,

(N2/3(λ1 − 2), N2/3(λ2 − 2)) d−→ (−Λ0,−Λ1), (3.41)

where Λ0, Λ1 are the bottom two eigenvalues of random operator H2/α. In addition, in
[AGZ09, Lemma 4.5.47] it is shown that the operator has simple spectrum with probability
one. This implies (iii) for WN .

But we know from Proposition 3.16 that (λ′
1, λ′

2) and (µ1, µ2) also have the same limiting
distribution, so the result also holds for W ′

N and MN .

Part (iv): Lemma 2.2 of [Gus05] yields that, in the GUE case,

E#{j : λj > 2− bN N−2/3} ≳ b
3/2
N ,

while lemma 2.3 of the same paper shows that

Var(#{j : λj > 2− bN N−2/3}) ≲ log bN .

The function fN (λ) = 1{λ ≥ 2 − bN N−2/3} has TV(f) = 1, and Corollary 2.6 yield
mean and variance bounds of the same order in the GOE case.

A Chebyshev bound completes the proof for WN , yielding in either case that, for some
constant C,

P(#{j : λj > 2− bN N−2/3} ≤ Cb
2/3
N )→ 0.
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To extend this result to W ′
N , let C be such that a.a.s.,

#{j : λj − bN N−2/3} ≳ b
3/2
N .

Assume without loss of generality that Cb
3/2
N ∈ Z.

Let G be a smooth increasing function such that

G(x) =

1 if x ≥ Cb
3/2
N + 1/2,

0 if x ≤ Cb
3/2
N .

According to Proposition 2.14(3), this satisfies condition F (δN ) with δN = O(N−1/3+O(ε)).

Since |(2− bN N−2/3)− 2| ≤ 2N−2/3+ε, we have by the equivalent of Eq. (3.40) together
with Proposition 2.9 that

P(NW ′
N

(2− bN N−2/3,∞) ≥ Cb
3/2
N )

≥ EG(g(W ′
N , 2− bN N−2/3 + ℓ)) + o(1)

≥ EG(g(WN , 2− bN N−2/3 + ℓ)) + O(N−1/3+O(ε))

≳ P(NWN
(2− bN N−2/3 + 2ℓ,∞) ≥ Cb

3/2
N + 1/2)

= P(NWN
(2− (bN − 2N−ε)N−2/3,∞) ≥ C(bN − 2N−ε)N−2/3)

→ 1,

where the inequality in the second-last line follows from the fact that Cb
3/2
N ∈ Z.

The spiked case follows from the fact that each µj ≥ λ′
j , and so

#{j : µj − bN N−2/3} ≥ #{j : λ′
j − bN N−2/3} ≳ b

3/2
N .

3.5.3 Asymptotic independence of log-determinant and top eigenvalue

Proposition 3.17 (Asymptotic independence). Let W ′
N be a Wigner matrix satisfying

W1-4 and MN is as in Eq. (3.37). Define

ξ1N (W ) = τ−1
N (− log|det(W − 2)|+ µN ),

ξ2N (W ) = N
2
3 (λ1(W )− 2).
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Then, ξ1N (MN ) and ξ2N (MN ) are asymptotically independent with limiting distribution
given by

(ξ1N (MN ), ξ2N (MN )) d−→ N (0, 1)× TW2/α .

Proof. First we consider the case where J = 0, i.e. with W ′
N in place of MN . In this

case, this is an immediate consequence of Proposition 2.10 and previous arguments for the
log-determinant in Theorem 2.1 and the largest eigenvalue in Proposition 3.16. Indeed, in
the proof of Proposition 2.17, we show that

ξ1N (W ′
N ) = τ−1

N (g0(W ′
N )− µ̄N ) + oP(1),

where for γN = N−2/3−2ε with ε > 0 small

g0(W ) =
∫ N100

γN

Im sW (2 + iη) dη, µ̄N = µN + N log(N100).

It is enough to consider joint convergence of

ξ̃1N (W ) = τ−1
N (g0(W )− µ̄N ) and ξ2N ,

since (ξ1N (W ′
N ), ξ2N (W ′

N )) = (−ξ̃1N (W ′
N ), ξ2N (W ′

N )) + oP(1).
In Proposition 2.10 we set Q±

1 (W, s) = G±
s (g0(W )), and Q±

2 (W, s) = 1−G1(g(W, E(s)±
ℓ)). We use Eq. (2.36) and Eq. (3.40) and their analogs for Q−

j to establish Eq. (2.13),
Eq. (2.14), and conditions F (δj,N ) follow from the respective previous arguments.

Convergence of the G(U/O)E versions (ξ1N , ξ2N ) d→ N (0, 1) × TW2/α is established in
Proposition 3.4, and the conclusion for (ξ′

1N , ξ′
2N ) follows now from Proposition 2.10.

As for the spiked case, eq. (95) of [JKOP20] shows that ξ1N (MN ) = ξ1N (W ′
N ) +

oP(1) for a fixed J ∈ (0, 1). Moreover, thanks to the stickiness property of Proposi-
tion 3.15, we also have ξ2N (MN ) = ξ2N (W ′

N ) + oP(1). Therefore, the limiting distribution
of (ξ1N (MN ), ξ2N (MN )) does not change as long as the spike is subcritical.

3.5.4 Inverse moments

Proposition 3.18. Let W ′
N be a Wigner matrix satisfying W1-4 and MN be as in Eq. (3.37).

(a) (Wigner extension of Lemma 3.6) Let b ̸= 0, and define γ̂ = 2 + b2N− 2
3 log N . For
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β = 1 + bN− 1
3
√

log N , define the function

GMN
(z) = βz − 1

N

N∑
j=1

log(z − µj).

Then, for b ̸= 0 and l ≥ 1,

G
(l)
MN

(γ̂) =


2b+N− 1

3 log 1
2 N + oP(N− 1

3 log− 1
4 N) if l = 1,

(−1)l (2l−4)!
(l−2)!

(
N

1
3

2|b| log
1
2 N

)2l−3
(1 + oP(1)) if l ≥ 2.

(3.42)

(b) (Wigner extension of Lemma 3.9). Let C ∈ R be fixed. Then

1
N

N∑
j=1

1
2 + CN− 2

3 − µj

= 1 + OP(N−1/3), and 1
N

N∑
j=1

1
(2 + CN− 2

3 − µj)2
= OP(N1/3).

(3.43)

First we rewrite Eq. (3.42) and Eq. (3.43) in terms of Stieltjes transforms. Since
GW (z) = βz −N−1∑N

1 log(z − λj(W )), we have for l ≥ 1,

G(l)(z) = β1(l = 1) + s
(l−1)
W (z).

Suppose as usual that |E − 2| ≲ σ̌N N−2/3 and define

g0(W ) = N−2l/3+1s
(l−1)
W (E) = (l − 1)!N−2l/3

N∑
j=1

(λj − E)−l.

For appropriate constants µN , σN and random variables ZN , Eq. (3.42) and Eq. (3.43)
can then be written as

g0(WN ) = µN + σN ZN , ZN = oP(1) or OP(1). (3.44)

Indeed, in the case of Eq. (3.42), with E = γ̂, in Eq. (3.44) we have

µN = −N1/31(l = 1) + cl|b|3−2l log−(l−3/2) N, σN = log−L N, L =

1/4 l = 1

l − 3/2 l ≥ 2
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and ZN = oP(1), with c1 = 1, c2 = 1/2 and with the general form of cl visible in Eq. (3.42).
In the case of Eq. (3.43), we take E = 2 + CN−2/3, and for l = 1, 2 in Eq. (3.44) we

have
µN = −N1/31(l = 1), σN = 1, ZN = OP(1).

Thus Lemma 3.6 and [JKOP20, Proposition 3] establish the validity of Eq. (3.44) for
WN drawn from G(U/O)E. We wish to carry this over to Z ′

N = (g0(W ′
N ) − µN )/σN for

W ′
N a Wigner matrix satsifying W1-4. To do this, we approximate g0(W ) by the Stieltjes

functional
g(W ) = N−2l/3+1 Re s

(l−1)
W (E + iη).

Lemma 3.19 (Approximation step). Let W be an N ×N Wigner matrix satisfying W1-3
and let E ∈ R be such that |E − 2| ≤ N− 2

3 σ̌N . Let ε > 0 and define η = N− 2
3 −3ε.

Then, for all l ∈ Z>0, we have with high probability that

N−2l/3+1s
(l−1)
W (E) = N−2l/3+1 Re s

(l−1)
W (E + iη) + O(N−ε). (3.45)

Proof. Let ε0 = ε/(l + 1). By eigenvalue non-concentration, there then exists a constant
d > 0 such that the event

EN =
{

min
1≤j≤N

|λj − E| ≥ N− 2
3 −ε0

}
holds with probability at least 1−N−d. The rest of the argument occurs on the event EN .

Now, the function ∑N
j=1

1
(z−λj)l is holomorphic in the open disk {z : |z−E| < N− 2

3 −ε0}.
Since ε0 < ε, the vertical segment γ connecting E to E + iη lies entirely within this disk,
so the fundamental theorem of calculus applies, rendering

∣∣∣Re
N∑

j=1

1
(E − λj + iη)l

−
N∑

j=1

1
(E − λj)l

∣∣∣ =
∣∣∣Re

∫
γ

N∑
j=1
− l

(z − λj)l+1 dz
∣∣∣

≤ lη
N∑

j=1

1
|E − λj |l+1 .

By Lemma 2.16, this is O(N− 2
3 −3ε · N ( 2

3 +ε0)(l+1)+ε)) = O(N 2
3 l−ε) w.o.p. on EN , from

which the result follows.

Lemma 3.19 says that g(WN ) satisfies Eq. (3.44) exactly when g0(WN ) does. So we
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carry out the Lindeberg swapping with g(W ).

Let κ > 0 and H : R → [0, 1] be a smooth cutoff function satisfying

H(x) =

1 if |x| ≤ κ

0 if |x| ≥ 2κ.

Let G(x) = H((x− µN )/σN ), so that ∥G(j)∥∞ ≲ bj
N = σ−j

N . We apply Proposition 2.14(4)
to G with bN = σ−1

N and to g with aN = N−1/3+O(ε) and hence δN = N−1/3+O(ε), so that
Proposition 2.9 yields EG(g(W ′

N )) = EG(g(WN )) + O(δN ). Write ŽN = (g(WN )−µN )/σN

and similarly for Ž ′
N . We conclude that

P(|Ž ′
N | > κ) = P(|g(W ′

N )− µN | > κσN )

≤ EG(g(W ′
N )) ≤ EG(g(WN )) + O(δN )

≤ P(|ŽN | > 2κ) + O(δN ).

A similar bound holds reversing the roles of WN and W ′
N . Consequently Ž ′

N is oP(1) or
OP(1) exactly when ŽN is. From Lemma 3.19, both ŽN−ZN and Ž ′

N−Z ′
N are O(N−ε) with

high probability. Thus Eq. (3.44) carries over to W ′
N and so Proposition 3.18 is established.

Inverse moments for the spiked case. Suppose that W̃N = WN + Jvv∗ has a spike
with a value J ∈ (0, 1). Let us show that Eq. (3.42)and Eq. (3.43) still hold for this case.
Let µj denote the eigenvalues of W̃N in the descending order, and λi are the eigenvalues of
WN .

Let γ equals either γ̂ from Eq. (3.42) or 2 + CN−2/3 from Eq. (3.43). In addition, let i∗

denotes the index of the nearest to γ among eigenvalues λi. Due to the interlacing property,
we have that 0 ≤ γ − µi ≤ γ − λi for i > i∗ and γ − µi ≤ γ − λi ≤ 0 for i < i∗.

Then,
N∑

i=1
(γ − µi)−l ≥

N∑
i=1

(γ − λi)−l − (γ − λi∗)−l + (γ − µi∗)−l.

Using the classical eigenvalue rigidity results [see, e.g. BK18, Theorem 2.9] to count the
number of eigenvalues with index at lest i∗, we find that for any ε > 0 w.o.p.

O(N−2/3 log N) =
(

i∗

N

)2/3
+ O

(
N−2/3+ε(i∗)−1/3

)
,
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which implies i∗ = O(N ε). Therefore, using Proposition 3.15 we have that w.o.p. |µi∗ −
λi∗ | ≲ N−1+3ε. Furthermore, by the non-concentration result from Proposition 2.15, with
high probability, |γ − λi∗ |−l ≤ N2l/3+lε. Hence we obtain that, with high probability,

(γ − λ∗
i )−l − (γ − µi∗)−l = (γ − λ∗

i )−l

[
1−

(
1 + λi∗ − µi∗

γ − λi∗

)−l
]

= O(N2l/3+lε)
[
1−

(
1 + O(N−1/3+Cε)

)−l
]

= O(N (2l−1)/3+Cε).

Taking ε sufficiently small, we obtain that for any L > 0,

N∑
i=1

(γ − µi)−l ≥
N∑

i=1
(γ − λi)−l + oP(N2l/3 log−L N) .

The inequality in the opposite direction can be obtained similarly by using µi ≤ λi+1 and
additionally observing that (γ − µ1)−l = OP(1).

It is easy to make sure that the difference of oP(N2l/3 log−L N) between the spiked
statistics and non-spiked one is sufficient for Eq. (3.42)and Eq. (3.43) to hold in the spiked
case as well.

3.5.5 Proof of Lemma 3.10

Let us first consider the case of no spike, J = 0. To this end, let {λj} be the eigenvalues of
a Wigner matrix satisfying W1-4. We rely on Proposition 3.18(b): for any fixed C ∈ R,

1
N

N∑
j=1

(2− λj)−1 = 1 + OP(N−1/3) and 1
N

N∑
j=1

(2− CN−2/3 − λj)−2 = OP(N1/3).

(3.46)
By the Cauchy-Schwarz inequality,∣∣∣∣∣ 1
N

∑N

j=2
1

λ1 − λj
− 1

N

∑N

j=2
1

2− λj

∣∣∣∣∣ =
∣∣∣∣∣ 1
N

∑N

j=2
2− λ1

(2− λj)(λ1 − λj)

∣∣∣∣∣
≤ |2− λ1|

(
1
N

∑N

j=2
1

(2− λj)2

)1/2( 1
N

∑N

j=2
1

(λ1 − λj)2

)1/2

.
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The bounds in Eq. (3.46) with C = 0, along with Tracy-Widom convergence |λ1 − 2| =
OP(N−2/3) show that to establish Lemma 3.10 for the case J = 0, it is sufficient to show
that 1

N

∑N
j=2

1
(λ1−λj)2 = OP(N1/3).

For this, we use convergence criterion C2 of Section 1.8. For each ε > 0, Tracy-Widom
convergence, Lemma 3.3 (i), yields a constant C such that event EN,ε = {λ1 > 2−CN−2/3}
has probability at least 1− ε for large N . On this event,

λ1 − λj ≥

2− CN−2/3 − λj if λj ≤ 2− CN−2/3,

λ1 − λ2 if λj > 2− CN−2/3.

The number variable χN (C) = #{j : λ1 > 2−CN−2/3} = OP(1) and λ1−λ2 = ΘP(N−2/3)
by Lemma 3.3 parts (ii) and (iii) respectively. Using also Eq. (3.46) we obtain, on EN,ε,

1
N

∑N

j=2
1

(λ1 − λj)2 ≤
1
N

∑N

j=1
1

(2− CN−2/3 − λj)2 + χN (C)
N(λ1 − λ2)2 = OP(N1/3).

This completes the proof of Lemma 3.10 for J = 0.
For J ∈ (0, 1), the lemma follows from the interlacing inequalities that link the eigen-

values of W̃N = WN + Jvv∗ and WN , and from the fact that any finite number of the
largest eigenvalues of W̃N are asymptotically distributed according to the multivariate
Tracy-Widom law (of type one for GOE and of type two for GUE), established in Proposi-
tion 3.16.



Chapter 4

Limiting likelihood ratio

4.1 Introduction

In [LP21], the authors introduced a function that they called the stochastic Airy function,
and demonstrated that it captured the limiting behavior of the characteristic function of a
Gaussian matrix at the scale 2 + O(N−2/3).

This function of a real parameter t and complex parameter λ was defined implicitly as
the unique solution to the SDE

dϕ′
λ(t) = (t + λ)ϕλ(t) dt + ϕλ(t) dB(t)

over L2([0,∞)), where B is a Brownian motion with EB(t)2 = 2αt.
More precisely, we have the following pathwise definition:

Definition 4.1 (Stochastic Airy function). Let B be a standard Brownian motion, λ ∈ C
and α ≥ 0. Then, define the kernel

Uλ(t, u) = t2 − u2

2 +
√

2α(B(t)−B(u)) + λ(t− u).

Let T ∈ R and c1, c2 ∈ C. The stochastic Airy equations are then the integral equations

Φλ(t) = c2 +
∫ t

T
Uλ(t, u)Φλ(u) du + c1Uλ(t, T ),

ϕλ(t) = c1 +
∫ t

T
Φλ(u) du.

77



78 CHAPTER 4. LIMITING LIKELIHOOD RATIO

There is, up to a constant multiple, a unique choice of (c1, c2) such that the corresponding
solutions (Φλ, ϕλ) remain bounded as t → ∞. The multiple c1/c2 is then chosen in such a
way that as α → 0, the t → ∞ asymptotics of SAiλ(t) coincide with those of Ai(t + λ) as
per [LP21, Eq. (1.7)].

The stochastic Airy function is then defined by

SAiλ(t) := ϕλ(t)

for this choice of (c1, c2).

The main result of [LP21] as pertains to this chapter is then as follows:

Theorem 4.2 ([LP21, Theorem 1.1]). Let WN be a scaled G(U/O)E. Let α = 1 in the
GUE case and α = 2 in the GOE case. Let φN be the characteristic polynomial of WN and
let wN be the weight function defined by

wN (z) :=
(

(2π)1/4eNz22−N (Nz2)−1/12

√
N !
NN

)−1
.

Define the scaled quantity

ΨN (λ) := 2−N wN (1 + λN−2/3/2)φN (2 + λN−2/3).

Then there exists a centered Gaussian random variable GN with

EG2
N = α

3 log N + O(1)

such that as a random real-analytic function under the topology of locally uniform conver-
gence of the function and all its derivatives,

(EeGN

eGN
ΨN (λ) : λ ∈ R

) d−→ (SAiλ(0) : λ ∈ R).

We will not directly use this result in this chapter, but we will use the machinery
developed in [LP21] to establish similar results for Gaussian matrices with critical spikes.

For the characteristic function of a Gaussian matrix with a critical spike, the corre-
sponding limiting object is no longer exactly the stochastic Airy function, but instead, the
following modified version:
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Definition 4.3. Let SAiλ(t) be the stochastic Airy function.

For b ∈ R, we then define

sb(λ) = −b SAiλ(0)− SAi′λ(0).

Let α ≥ 1 and let µ∗ be the largest root of sb(λ). We then define s
(α)
b to be the unique

function that is analytic on C \ (−∞, µ∗] and satisfies

(s(α)
b )α = sb(λ)

and s
(α)
b (x) > 0 for x ∈ (µ∗,∞). We will refer to s

(α)
b as a spiked stochastic Airy function.

The existence and properties of these functions is discussed in Sections 4.3.2 and 4.3.4.

4.2 Main results

We begin by presenting a direct extension of Theorem 4.2 to the critically-spiked case.
The joint convergence result of Theorem 4.4 is critical for inferring various results about
the critically-spiked scaled characteristic polynomial Ψ(b)

N from the corresponding unspiked
quantity ΨN .

Theorem 4.4. In the setting of Theorem 4.2, let b ∈ R and let W
(b0)
N = WN + (1 +

b0N−1/3)e1e∗
1 be a scaled spiked Gaussian matrix with scaled characteristic polynomial Ψ(b0)

N .

Then, under the topology of locally uniform convergence of the function and all its
derivatives,

EeGN

eGN

(
(ΨN (λ), N1/3Ψ(b0)

N (λ)) : λ ∈ R
) d−→

(
(SAiλ(0),−SAi′λ(0)− b0 SAiλ(0)) : λ ∈ R

)
.

(4.1)

Having established this generic result, we move to the investigation of quantities specif-
ically related to the likelihood ratio of two critically-spiked Gaussian matrices. To this end,
let b, b0 ∈ R. Let WN be a Gaussian matrix with spike β0 = 1 + b0N−1/3 and call its
eigenvalues λ̃b0

1,N > · · · > λ̃b0
N,N .
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The main object of study in this chapter is the following object:

Ib,b0 :=
∫
K

exp
{N

α

[
βz − 1

N

N∑
j=1

log(z − λ̃b0
j,N )

]}
,

which is the critically-spiked version of the integral
∫
K exp{(N/α)G(z) dz} that was studied

in Chapter 3.
In Theorem 4.5, we will describe the limiting behaviour of this quantity in terms of the

stochastic Airy function:

Theorem 4.5. Let b0, b ∈ R and α ∈ {1, 2}. There exist

1. a sequence {WN}N of random matrices whose eigenvalues are equal in distribution to
those of a GOE if α = 2 or GUE if α = 1 and spike β0 = 1 + b0N−1/3, and

2. a spiked stochastic Airy function s
(α)
b0

coupled with {WN}N

such that, for any b ∈ R,

N2/3 exp
{
−2N

α
− 2bN2/3

α

}
|φ(b0)

N (2)|1/αIb,b0
a.s.−−→

∫
K

ebw/αs
(α)
b0

(w)−1 dw, (4.2)

where is a contour that runs from −i∞ to +i∞ and passes on the positive side of µ
(b0)
1,∞ and

where φ
(b0)
N is the characteristic polynomial of WN .

This result will be the main tool used to find the limiting behaviour of the SSK model
at the triple point, and then to describe the limiting distribution of the likelihood ratio for
testing between two critically-spiked Gaussian matrices.

4.2.1 The SSK triple point

The results of Chapter 3 complete the paramagnetic-spin glass phase transition of the SSK
phase diagram show in Fig. 1.1.

This leaves only the triple-point unaddressed. That is, in the notation of Eqs. (3.1)
to (3.3), we would like to know the limiting distribution of Fα,N where β, J ∼ 1.

Recall from Eqs. (3.3) and (3.6) that Fα,N = (α/2N) log Zα,N , where

Zα,N = Cα,N
Ib,b0

2πi
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for the constant Cα,N defined by

Cα,N = Γ(N/α)
(βN/α)N/α−1 .

Directly using the limiting description of Ib,b0 we can establish the following extension
of Theorem 3.1 to a regime within the triple-point

Theorem 4.6. Let b, b0 ∈ R and α ∈ {1, 2}. Let Fα,N be defined as in Eq. (3.1) – Eq. (3.3)
with β = 1 + bN−1/3 and J = 1 + b0N−1/3. Then

N√
α
12 log N

(
Fα,N − F (β)− log N

12N

)
d−→ N (0, 1), (4.3)

where F (β) = β − 1
2 log β − 3

4 .

Remark 4.7. In the above, we could also have chosen F (β) = β2/4, which is the other
piece in Eq. (1.12), since the difference between these terms is O(N−1).

Comparing this with Theorem 3.1, we also see that the sign of the log N/12N term is
flipped. In light of the differences between Theorem 2.1 and Lemma 4.26, we find that
this is because the additional O(N−1/3) separation of λ̃b0

1,N from the bulk caused by the
critical spike causes |φ(b0)

N (2)| to be O(N1/3) times smaller than the corresponding unspiked
quantity. This then induces a O(log N/N) shift in Fα,N .

The lack of dependence on b0 and b in the limiting distribution on the right-hand side
of Eq. (4.3) suggests that this in an incomplete description of the SSK triple point. Indeed,
by using the results of this chapter, we can extend the reasoning of Chapter 3 to the triple
point for β = 1 + bN−1/3√log N with b > 0. Precisely, we have the following:

Theorem 4.8. Consider Fα,N with α = 1 or α = 2, as defined in Eq. (3.1) – Eq. (3.3).
Let β = 1 + bN−1/3√log N for a constant b ≥ 0 and let 0 ≤ J < 1. Then

N√
α
12 log N

(
Fα,N − F (β)− log N

12N

)
d−→ N (0, 1) +

√
3
α

bBV(−b0)2/α, (4.4)

where BV2 and BV1 are the complex and real Bloemendal-Viràg distributions, respectively,
independent from the N (0, 1), and where F (β) = β − 1

2 log β − 3
4 .

The proof of these results is completed in Section 4.4.
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4.2.2 Likelihood ratio of critically-spiked Gaussians

Let WN be a scaled Gaussian matrix with critical spike h. We return to our initial testing
problem of

H0 : h = β0 := 1 + b0N−1/3 vs H1 : h = β := 1 + bN−1/3.

Recall from Section 1.2.1 that the likelihood ratio for this test is based on L(Λ) :=
pN (Λ; β)/pN (Λ; β0), where pN ( · ; h) is the density of the eigenvalues of WN .

Now according to Eq. (1.3), we can express

pN (Λ; h) = c(Λ)d(h)Zα,N = c(Λ)
2πi d(h)Cα,N Ib,b0 .

where d(h) = exp{(2N/α) · h2/4}.
Unfortunately, the limiting description of Zα,N implied by Theorem 4.6 is not in itself

sufficient to pin down the limiting distribution of L(Λ). However, we can write

log pN (Λ; β)
pN (Λ; β0) = 2N

α

1
4(β2 − β2

0) +
(N

α
− 1

)
log β

β0
+ log Ib,b0

Ib0,b0

= 2
α

N2/3(b− b0) + log Ib,b0

Ib0,b0

+ o(1). (4.5)

Now, the results of Theorem 4.5 can be used to properly analyze log(Ib,b0/Ib0,b0), and
yield the following description of the likelihood ratio’s limiting distribution:

Theorem 4.9. Let α ∈ {1, 2} and N ∈ Z>0. Let b, b0 ∈ R and let β = 1 + bN−1/3, β0 =
1 + b0N−1/3.

Let pN ( · ; h) be the density of the eigenvalues of an N × N GUE if α = 1 or GOE if
α = 2 with a spike of h. If Λ ∼ pN ( · ; β0), then

pN (Λ; β)
pN (Λ; β0)

d−→
∫
K ebw/αs

(α)
b0

(w)−1 dw∫
K eb0w/αs

(α)
b0

(w)−1 dw
,

where K is a contour that runs from −i∞ to +i∞ and passes on the positive side of the
largest root of s

(α)
b0

(w).

As with Theorem 4.6, this result is proved in Section 4.4.
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Remark 4.10. In Theorem 4.9, β and β0 are of the same form. This means that, under
the alternative hypotheses, Λ1 ∼ pN ( · ; β), it is also true that

pN (Λ1; β0)
pN (Λ1; β)

d−→
∫
K eb0w/αs

(α)
b (w)−1 dw∫

K ebw/αs
(α)
b (w)−1 dw

.

Taking θ = b− b0, the distributional convergence under the corresponding nulls of both
likelihood ratios to a non-zero limit implies, by Le Cam’s first lemma, that for any b0 ∈ R,
the experiment

H0 : h = h0 := 1 + b0N−1/3 vs. H1 : h = h0 + θN−1/3

has mutually contiguous null and alternative hypotheses.

4.3 Preliminary results

Before proceeding to the proof of Theorem 4.5, we must establish several results about the
convergence of the characteristic polynomial of a critically-spiked Gaussian.

To this end, the rest of this chapter is organized as follows:

1. In Section 4.3.2, we establish convergence analogous to theorem 1.6 of [LP21] in the
b ∈ R case and define sb.

2. In order to properly define a consistent contour of integration and complex roots, we
must first establish that for any j, the scaled eigenvalues |N2/3(λ̃(b)

j,N − 2)| are almost
surely bounded. We address this in Section 4.3.3.

3. In Section 4.3.4, we properly define s
(α)
b as the αth root of sb and show that we can

infer limiting results about αth root a function from corresponding results from the
original function. even though one is not a simple function of the other.

4. The proof of Theorem 4.5, which is mostly devoted to verifying the conditions for
dominated convergence for Ib,b0 , is in Section 4.4. It is then joined there by the proofs
of the other important theorems of this chapter.
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4.3.1 Notation

Let A be the symmetric tridiagonal semi-infinite matrix described of [LP21, Eq. (1.10)] and
let 2/α be the corresponding Dyson parameter. That is,

A =


b1 a1

a1 b2 a2

a2 b3
. . .

. . . . . .

 ,

where

bi ∼ N (0, 2), ai ∼ χ(2/α)i

are independent random variables. We use the notation [A]n,n to denote the principal n×n

submatrix of A.
For b ∈ R and n ∈ Z>0, define

[A](b)
n,n = [A]n,n +

√
n(2/α)hneneT

n

where hn = 1 + bn−1/3 and where en is the nth standard basis vector in Rn. In this way,
the eigenvalues of [A](b)

n,n have the same joint distribution as the eigenvalues of a G(U/O)E
with spike hn.

Now for b ∈ R, let λ
(b)
1,N > λ

(b)
2,N > · · · > λ

(b)
N,N be the eigenvalues of A(b)

N and define the
scaled versions of these eigenvalues by

λ̃
(b)
j,N = 1√

Nβ
λ

(b)
j,N ,

µ
(b)
j,N = N2/3(λ̃(b)

j,N − 2).

Using these quantities, define the functions:

φ
(b)
N (z) =

N∏
j=1

(z − λ̃
(b)
j,N ),

f
(α,b)
N (w) = exp

{ 1
α

[
−N1/3w +

N∑
j=1

log(2 + wN−2/3 − λ̃
(b)
j,N )

]}
,
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where α ∈ Z>0.

Here, φ
(b)
N is the characteristic polynomial of [A](b)

N,N /
√

Nβ, whereas f
(α,b)
N is in some

sense the “scaled αth root of φ
(b)
N .” This notion is made precise in Section 4.3.4.

In any case, notice that µ
(b)
j,N are the zeroes of f

(1,b)
N .

4.3.2 Characteristic polynomial in the spiked case

Following the notation of [LP21], for a fixed N and b ∈ R, define

Φ(b)
n (z) = det(zI − (4Nβ)−1/2[A](b)

n,n),

Ψ(b)
n (λ) = wn

(
1 + λ

2N2/3

)
Φn

(
1 + λ

2N2/3

)
,

where wn is the weight function

wn(z) =
(

(2π)1/4eNz22−n(Nz2)−1/12

√
n!
Nn

)−1

given in eq. 1.2 of [LP21]. In terms of these quantities,

φ
(b)
N (2) = 2N Φ(b)

N (1), (4.6)

From the recurrence on the first display on p. 6 of [LP21], we have that

Φ(b)
N (z) = det(zI − (4Nβ)−1/2[A](b)

N,N )

=
(
z − bN

2
√

Nβ
− hN

2
)
ΦN−1(z)−

a2
N−1

4Nβ
ΦN−2(z),

= ΦN (z)− hN

2 ΦN−1(z).

It follows that

Ψ(b)
N (λ) = wN (z)Φ(b)

N (z)

= ΨN (λ)− hN

2
wN (z)

wN−1(z)ΨN−1(λ)

= ΨN (λ)− hN ΨN−1(λ).
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The last line follows from the fact that, for m, n ∈ Z≥0, we have that

wn(z)
wm(z) = 2−m

√
m!/Nm

2−n
√

n!/Nn

= 2n−m

√
m!
n! N

n−m
2 ,

and in particular wN (z)/wN−1(z) = 2.

As in eq. (9.2) of [LP21], define piecewise linear interpolations Pλ : (−∞, T ] → R over
the grid N−1/3Z (where T = N−1/3ωN ∼ log1−κ N for some κ > 0 and ωN ∈ Z>0) by

P ′
λ(t) = N1/3(Ψn−1(λ)−Ψn(λ))1{N − n = ⌊tN1/3⌋} Pλ(0) = Ψλ(0).

With this notation, we can write

Ψ(b)
N (λ) = Pλ(0)− hN Pλ(N−1/3)

= (1− hN )Pλ(0)− hN N−1/3P ′
λ(0),

where the above is an exact equality due to the fact that Pλ is piecewise linear.

Since hN = 1 + bN−1/3, the above becomes

Ψ(b)
N (λ) = −N−1/3[bPλ(0) + P ′

λ(0)]−N−2/3bP ′
λ(0),

N1/3Ψ(b)
N (λ) = −bPλ(0)− P ′

λ(0) + N−1/3bP ′
λ(0).

By the eighth display on [LP21, p. 79], we have that

Pλ(t) = CN (SAiλ(t)eεN,λ + χN,λ(t)),

P ′
λ(t) = CN (SAi′λ(t)eεN,λ + χ′

N,λ(t)),

where

CN = eGN

EeGN
, GN ∼ N

(
0,

α

3 log N + O(1)
)

is a random constant that doesn’t depend on λ or t. Moreover, with probability 1 −
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e−(log N)1+ε for k ∈ {0, 1},

sup
λ∈K
|eεN,λ − 1| = O((log N)−1/6+ε),

sup
λ∈K,t∈[−eT ,T ]

|∂k
t χN,λ(t)| = O(Nκ−1/6).

The last display of [LP21, p. 79] only explicitly states the bound for k = 0. However,
the bounds in [LP21, Eqs. 9.14 and 9.17] also hold unchanged for k = 1, and so this bound
also holds for k = 1.

To conveniently represent the various limiting results that hold uniformly in λ ∈ K, we
will use gN (λ) = OK(aN ) to mean supλ∈K |gN (λ)| = O(aN ).

Hence, we have that

N1/3

CN
Ψ(b)

N (λ) = −b[SAiλ(0)eεN,λ + χN,λ(0)]− [SAi′λ(0)eεN,λ + χ′
N,λ(0)](1−N−1/3b)

= sb(λ)eεN,λ − χN,λ(0) + χ′
N,λ(0)(1−N−1/3b)

= sb(λ)(1 + OK((log N)−1/6+ε)) + OK(Nκ−1/6). (4.7)

Now, Eq. (4.1) follows immediately from the above display. In particular:

Proof of Theorem 4.4. The eighth display on [LP21, p. 79] has the equivalent of Eq. (4.7)
in the unspiked case, namely that

1
CN

ΨN (λ) = SAiλ(0)(1 + OK((log N)−1/6+ε)) + OK(Nκ−1/6).

Since sb(λ) = −SAi′λ(0)− b SAiλ(0), the joint convergence of Theorem 4.4 follows.

Equation (4.1) also allows us to analyze the integrand of Ib,b0 . To this end, define

f
(α,b)
N (λ) = exp

{
−N1/3λ +

N∑
j=1

log(2 + λN−2/3 − λ̃
(b)
j,N )

}
.

Proposition 4.11. Let K ⊆ R be compact. For any b ∈ R, we have that

sup
λ∈K

∣∣∣∣f (1,b)
N (λ)
|φ(b)

N (2)|
− sb(λ)
|sb(0)|

∣∣∣∣ a.s.−−→ 0 (4.8)
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Proof. Let z = 1 + λ/(2N2/3) for λ ∈ K. We then have that

f
(1,b)
N (λ) = exp

{
−N1/3λ +

N∑
j=1

log(2 + λN−2/3 − λ̃
(b)
j,N )

}

= exp
{
−N1/3λ + N log 2 +

N∑
j=1

log
(
1 + λ

2N2/3 −
λ

(b)
j,N√
4Nβ

)}
= 2N e−N1/3λΦ(b)

N (z), (4.9)

recalling that λ1 > . . . > λN are the eigenvalues of [A](b)
N,N .

Here, the last line follows from the fact that

exp
{ N∑

j=1
log
(
z −

λ
(b)
j,N√
4Nβ

)}
=

N∏
j=1

(
z −

λ
(b)
j,N√
4Nβ

)
.

Notice, however, that for α ̸= 1, we have in general that

exp
{ 1

α

N∑
j=1

log
(
z −

λ
(b)
j,N√
4Nβ

)}
̸=

N∏
j=1

(
z −

λ
(b)
j,N√
4Nβ

)1/α
.

This discrepancy is the reason that it is not the case that f
(α,b)
N (λ)

|φ(b)
N (2)|

→ sb(λ)1/α

|sb(0)| for any choice

of branch cut in z 7→ z1/α, and why we must be more careful when defining s
(α)
N (λ).

Further, notice that

wN (z)
wN (1) = eN(1−z2)N1/6

= exp
{

N
(
− λ

2N2/3

)(
2 + λ

2N2/3

)
+ 1

6 log
(
1 + λ

2N2/3

)}
= e−N1/3λ(1 + OK(N−2/3)).

Combining the above with Eqs. (4.6) and (4.9), yields that

f
(1,b)
N (λ)
|φ(b)

N (2)|
= e−N1/3λ Φ(b)

N (z)
|Φ(b)

N (1)|
= Ψ(b)

N (λ)
|Ψ(b)

N (0)|
(1 + OK(N−2/3)). (4.10)
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Now, it follows from the representation of Φ(b)
N in Eq. (4.1) that

Ψ(b)
N (λ)

|Ψ(b)
N (0)|

= sb(λ)(1 + OK((log N)−1/6+ε)) + OK(Nκ−1/6)
|sb(0)(1 + OK((log N)−1/6+ε)) + OK(Nκ−1/6)|

.

Since P(sb(0) = 0) = 0, we can conclude that

sup
λ∈K

∣∣∣∣ Ψ(b)
N (λ)

|Ψ(b)
N (0)|

− sb(λ)
|sb(0)|

∣∣∣∣ a.s.−−→ 0.

Combining this with Eq. (4.10) completes the proof.

We would like to simply extend Proposition 4.11 directly to the complex plane using the
results of [Ass22]. However, the function f

(1,b)
N /|φ(b)

N (2)| is not of the correct form due to the
absolute value in the denominator. To this end, we must prove the following intermediate
result:

Corollary 4.12. Let K ⊆ R be compact. For any b ∈ R, we have that

sup
λ∈K

∣∣∣∣f (1,b)
N (λ)
φ

(b)
N (2)

− sb(λ)
sb(0)

∣∣∣∣ a.s.−−→ 0. (4.11)

Proof. Since sb(0) ̸= 0 almost surely, we have that

sign φ
(b)
N (2) = sign f1,b

N (λ)→ sign sb(0),

from which we see that

f
(1,b)
N (λ)
φ

(b)
N (2)

= f
(1,b)
N (λ)

|φ(b)
N (2)| sign φ

(b)
N (2)

a.s.−−→ sb(λ)
|sb(0)| sign sb(0) = sb(λ)

sb(0) .

uniformly in K.

Corollary 4.13. Let b ∈ R. Let K ⊆ C be compact. For any b ∈ R, we have that

sup
λ∈K

∣∣∣∣f (1,b)
N (λ)
φ

(b)
N (2)

− sb(λ)
sb(0)

∣∣∣∣ a.s.−−→ 0. (4.12)
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Proof. Now, we have that

f1,b
N (λ)

φ
(b)
N (2)

= e−N1/3λ
N∏

i=1

(
1 + λ

−µ
(b)
j,N

)
.

Together with Corollary 4.12, this shows that f1,b
N (λ)/φ

(b)
N (2) satisfies the hypothesis of

Proposition 4.6 of [Ass22], and so we have that, almost surely,

f
(1,b)
N

φ
(b)
N (2)

→ sb

sb(0)

uniformly in compact subsets of C. The conclusion follows again from the observation that
sign φ

(b)
N (2) a.s.−−→ sign sb(0).

4.3.3 Extreme values of top eigenvalues

This section is devoted to showing that, almost surely,

sup
N
|µ(b)

j,N | <∞. (4.13)

A critical result for this conclusion is the following description of the zeroes of sb:

Lemma 4.14. Let b ∈ R, and let Mb be the zero set of sb. It holds almost surely that

1. Mb is a countable subset of R,

2. Mb is bounded above,

3. Mb has no accumulation points.

Proof. This is a restatement of theorem 6.7 of [LP21] with the identification ω = −b.

Definition 4.15. Given the convergence outlined in Proposition 4.11 of f
(1,b)
N to sb up to

some scaling, it is evocative to think of the zeroes of sb as the limiting zeroes of f
(1,b)
N .

Moreover, Lemma 4.14 confirms that these zeroes can be enumerated in decreasing
order, so denote the zeroes of sb by

µ
(b)
1,∞ > µ

(b)
2,∞ > · · · .
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Now, we demonstrate the positive and negative parts of the bound Eq. (4.13) separately
in the following subsections:

Lower bound

We know from Lemma 4.14 that sb has infinitely many zeroes. Hence, to demonstrate
the lower bound of Eq. (4.13), we must show that these zeroes don’t appear “at the last
minute,” as happens, for example in the limit of gN (x) = x2 + 1

N

The relevant observation is that each function f
(1,b)
N is a polynomial multiplied by an

exponential, and Lemma 4.17 shows that for such functions, since the zeroes and stationary
points are interlaced, it cannot happen that a zero is introduced to the limiting function
without a nearby zero being present in the f

(1,b)
N .

This is enough to “anchor” the zeroes of f
(1,b)
N near to those of sb and so guarantee that

lim infN→∞ µ
(b)
j,N remains finite.

Lemma 4.16. Let p be a real-rooted polynomial and let g be a log-concave function.
If f(x) = p(x)g(x), then all local maxima of f are non-negative and all local minima of

f are non-positive.

Proof. Let x0 be a local extremum of f such that f(x0) ̸= 0. Suppose that f(x0) > 0. Since
f is continuous, let (a, b) ∋ x0 be an interval such that f , and so p, is positive on (a, b).

Let λ1, . . . , λN ∈ R be the roots of p so that we have, for x ∈ (a, b)

d
dx

log p(x) = p′(x)
p(x) =

N∑
j=1

1
x− λj

,

d2

dx2 log p(x) = −
N∑

j=1

1
(x− λj)2 < 0.

That is, p, and so f , is log-concave. In particular, the extremum of f at x0 must be a
local maximum.

Similarly, if f(x0) < 0, then f has a local minimum at x0.

Lemma 4.17. Let {pN} be a sequence of real-rooted polynomials, {κN} a sequence in R,
and f a function such that fN (x) := pN (x)eκN x → f(x) pointwise.

Let x ∈ R be an isolated root of f . Then there exists a sequence of real numbers {xN}
such that
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1. fN (xN ) = 0 for each N , and

2. xN → x.

Proof. Let ε > 0 be small enough that f has no zeroes other than x in [x− ε, x + ε].
First, consider the case where f(x− ε) and f(x + ε) have opposite signs. Without loss

of generality, assume that
f(x− ε) < −η < η < f(x + ε)

for some η > 0,
Let N0 be such that, for all N > N0, |fN (y) − f(y)| < ε/2 for y ∈ {x − ε, x + ε}. It

follows that
fN (x− ε) < −η

2 <
η

2 < fN (x + ε),

and so that each such fN has a root in (x− ε, x + ε).
On the other hand, consider the case where f(x− ε) and f(x + ε) have the same sign.

Without loss of generality, assume that

f(x− ε), f(x + ε) > η

for some η > 0.
Let N0 be such that, for all N > N0, |fN (y) − f(y)| < ε/3 for y ∈ {x − ε, x, x + ε}. It

follows that

fN (x− ε), fN (x + ε) >
2η

3 ,

fN (x) <
η

3 ,

and so that fN has a local minimum at some x0 ∈ (x− ε, x + ε).
Since fN of the form described in Lemma 4.16, this means that fN (x0) < 0, and so,

since fN (x− ε) > 0, that fN has a root in (x− ε, x + ε).
It follows that we can always choose a sequence {xN} of zeroes of {fN} such that

xN → x.

Proposition 4.18. For any b ∈ R and for any k ∈ Z>0, it holds almost surely that

inf
N

µ
(b)
j,N > −∞. (4.14)



4.3. PRELIMINARY RESULTS 93

Proof. Let ε > 0. By Lemma 4.14, there exists a Kε such that µ
(b)
k,∞ > Cε on an event Aε

such that P(Aε) > 1− ε.
Since, by Lemma 4.14(3), each µ

(b)
j,∞ is an isolated root of sb(w)/|sb(0)|, and since Propo-

sition 4.11 yields that, almost surely f
(1,b)
N /|φ(b)

N (2)| → sb/|sb(0)|, these functions satisfy the
hypotheses of Lemma 4.17.

Therefore, for each j ≤ k there exists a sequence {µ̃j,N} such that µ̃j,N is a root of f
(1,b)
N

and µ̃j,N → µ
(b)
j,∞ (it is not explicitly stated or required for this argument that µ̃j,N = µ

(b)
j,N ).

In particular, there is an N0 such that, for N > N0, µ̃j,N > Cε−1 for each j ≤ k, and so
f

(1,b)
N has at least k zeroes exceeding Cε − 1. Therefore, on Aε, lim infN→∞ µ

(b)
j,N > Cε − 1,

and so
P
(
inf
N

µ
(b)
j,N > −∞

)
> 1− ε.

Since this holds for any ε > 0, it follows that Eq. (4.14) holds almost surely.

Upper bound

For the upper bound of Eq. (4.13), we again know from Lemma 4.14(2) that µ
(b)
1,∞ <∞.

If lim infN→∞ µ
(b)
1,N =∞, we show that this conflicts with the convergence in distribution

of µ
(b)
1,N . On the other hand, we show how eigenvalue interlacing guarantees that it is

impossible for µ
(b)
1,N to oscillate in such a way that only a subsequence diverges to infinity.

Proposition 4.19. For any b ∈ R, it holds almost surely that

sup
N

µ1,N <∞.

Proof. Since µ
(b)
1,∞ is the largest root of sb, it must be that sb is eventually either positive

or negative. We deal with these cases separately.
Case 1: limw→∞ sign sb(w) = −1.

Let x0 = µ
(b)
1,∞ + 1 and let x > x0 Since sb(x) = −η for some η > 0, there is an N0 such

that, for all N > N0, ∣∣∣∣f (1,b)
N (x)
|φ(b)

N (2)|
− sb(x)
|sb(0)|

∣∣∣∣ <
η

2 ,

and in particular, f
(1,b)
N (x) < 0.

But since f
(1,b)
N is a monic polynomial multiplied by a positive function, this means that,

for any N > N0, f
(1,b)
N must have an odd number of zeroes exceeding x.
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In particular, lim infN→∞ µ
(b)
1,∞ > x. But since this holds for arbitrarily large x, it follows

that lim infN→∞ µ
(b)
1,N =∞.

Case 2: limw→∞ sign sb(w) = +1.

Again, let x0 = µ
(b)
1,∞ + 1 and let x > x0. Following the reasoning of the previous case,

let N0 be such that f
(1,b)
N (x) > 0 for N > N0.

Since [A]N,N is a principal submatrix of [A](b)
N+1,N+1, we have by Cauchy interlacing

that
λ

(b)
2,N+1 = λ2([A]N+1,N+1 +

√
(N + 1)βhN+1eN+1eT

N+1) ≤ λ1(AN ).

Moreover, since
√

NβhN eN eT
N is non-negative definite, we have that

λ1([A]N,N ) ≤ λ1([A]N,N +
√

NβhN eN eT
N ) = λ

(b)
1,N .

Let N1 be large enough that the function y 7→ √y(2 + xy−2/3) is increasing on [N1,∞).

Suppose that µ
(b)
1,N < x for some N > N0 ∨N1. We then have that

λ
(b)
2,N+1√

β
≤

λ
(b)
1,N√
β

≤
√

N(2 + xN−2/3)

≤
√

N + 1(2 + x(N + 1)−2/3),

and so µ
(b)
2,N+1 < x.

In particular, since f
(1,b)
N+1 is a monic polynomial multiplied by a positive function,

sign[f (1,b)
N+1(x)] = sign(x− µ

(b)
1,N+1) sign

[ N∏
j=2

(x− µ
(b)
2,N+1)

]
= sign(x− µ

(b)
1,N+1).

But since N + 1 > N0, f
(1,b)
N+1(x) > 0, so it follows that µ

(b)
1,N+1 < x. By induction, either

lim supN→∞ µ
(b)
1,N < x, or lim infN→∞ µ

(b)
1,N > x. Since this dichotomy holds for arbitrarily

large x, if follows that if supN µ
(b)
1,N =∞, then necessarily lim infN→∞ µ

(b)
1,N =∞.

Conclusion: consequence of lim infN→∞ µ
(b)
1,N =∞.
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Let L > 0 and let hL : R → [0, 1] be a continuous function such that

hL(x) =

 0 if x ≤ L,

1 if x ≥ L + 1.

From Theorem 1.5 of [BV13], we have that µ
(b)
1,N

d−→ µ
(b)
1,∞. If follows from Fatou’s lemma

that

P(µ(b)
1,∞ ≥ L) ≥ EhL(µ(b)

1,∞)

= lim inf
N→∞

EhL(µ(b)
1,N )

≥ E lim inf
N→∞

hL(µ(b)
1,N )

≥ P(lim inf
N→∞

µ
(b)
1,N =∞)

≥ P(sup
N

µ
(b)
1,N =∞).

Since P(µ(b)
1,∞ =∞) = 0, we take L→∞ to conclude from the above that

P
(
sup
N

µ
(b)
1,N =∞

)
= 0.

Remark 4.20. Notice that the above proof also demonstrates that

P( lim
w→∞

sb(w) = −1) ≤ P(lim inf
N→∞

µ
(b)
1,N =∞) = 0.

4.3.4 Complex roots of the characteristic polynomial

Let h be an analytic function such that h(x) > 0 for all x > x0 and such that h has no
zeroes away from the real line.

For α ∈ Z>0, define a functional Gα acting on such h so that Gα(h) is a function on
C \ (−∞, x0] defined by

Gα(h) = exp
{ 1

α

[∫ w

x0

h′(w)
h(w) dw + log h(w)

}
, (4.15)

where the integral it taken over a path in C \ (−∞, x0]. Since h′/h is analytic over this
simply-connected region, this is well-defined.

Since Gα is built from a standard construction of the complex logarithm [see, e.g. Rud87,
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Theorem 13.11], it is a standard exercise in complex analysis to verify that it has the
following properties:

Lemma 4.21. Let h be an analytic function such that h(x) > 0 for all x > x0 and such
that h has no zeroes away from the real line. Then Gα(h) is analytic in C \ (−∞, x0] and
has the following properties:

1. [Gα(h)(w)]α = h(w) for all w ∈ C \ (−∞, x0],

2. Gα(h)(x) = h(x)1/α for all x > x0, and

3. If C > 0 is a constant, then Gα(Ch) = C1/αGα(h).

Lemma 4.22. Let {hN} and h∞ be holomorphic functions with no zeroes away from the
real line such that, for all N ∈ Z>0, hN (x) > 0 for all x > xN .

If hN → h uniformly in compact subsets of C, and if supN xN = X∗ <∞then

Gα(hN )→ Gα(h∞)

uniformly in compact subsets of C \ (−∞, x∗].

Proof. First, take x0 = x∗ + 1 as a common integration basepoint in Eq. (4.15). The result
follows from the fact that, on any compact K, hN and hN must be uniformly bounded away
from 0, from which is follows that h′

N /hN converges to h′
∞/h∞ uniformly in K.

Moreover, there is an L <∞ such that, for any u ∈ K, there is a path in K connecting
x0 to u whose length is less than L, allowing us to bound the difference in integrals.

Proposition 4.23. We have that

f
(α,b)
N = Gα(f (1,b)

N ).

Proof. This follows from the fact that these are two functions analytic on C \ (−∞, µ
(b)
1,N ]

that coincide on the ray (µ(b)
1,N ,∞).

Definition 4.24. Recall that in Remark 4.20, we noted that sb(x) is eventually positive
for x→∞ along the real axis.

It follows that we can define
s

(α)
b = Gα(sb).
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Proposition 4.25. Let b ∈ R and α ∈ Z>0.
Let µ∗ = supN µ

(b)
1,N . It holds almost surely that

f
(α,b)
N

|φ(b)
N (2)|1/α

→
s

(α)
b

|sb(0)|1/α

uniformly in compact subsets of C \ (−∞, µ∗].

Proof. First, Lemma 4.21(3) together with Proposition 4.23 yields that

f
(α,b)
N

|φ(b)
N (2)|1/α

= Gα

[
f

(1,b)
N

|φ(b)
N (2)|

]
,

s
(α)
b

|sb(0)|1/α
= Gα

[
sb

|sb(0)|

]

Moreover, Proposition 4.19 guarantees that µ∗ <∞ almost surely, and so we can apply
Lemma 4.22 together with Corollary 4.13 to conclude that, almost surely,

Gα

[
f

(1,b)
N

|φ(b)
N (2)|

]
→ Gα

[
sb

|sb(0)|

]

uniformly in compact subsets of C \ (−∞, µ∗]. Combining the previous two displays com-
pletes the proof.

4.4 Proofs of main results

Fix a b0 ∈ R and define

Ib,b0 =
∫

Γ
exp

{ 1
α

[
N(1 + bN−1/3)z −

N∑
j=1

log(z − λ̃
(b0)
j,N )

]}
dz,

where Γ is a (random) contour with bounded real part that runs from −i∞ to +i∞ and
passes on the positive side of λ̃

(b0)
1,N .

Proof of Theorem 4.5

Let ε > 0. Using Propositions 4.18 and 4.19, there exists a Kε > 0 and an event Aε with
P(Aε > 0) such that

max
1≤j≤2α

sup
N

N2/3|λ̃(b)
j,N − 2| < Kε. (4.16)
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Re(z)

Im(z)

. . . µ4,N µ3,N µ2,N µ1,N Kε

i

−i

K1

K2

K3

Figure 4.1: Contour of integration

Define a contour K that runs from −∞i to −i along the imaginary axis, from −i to +i
by crossing the real axis to the right of Kε and then from +i to +∞ along the imaginary
axis. Call these three sections K1,K2,K3 respectively. The contour is shown in Fig. 4.1.

Based on this, define

ΓN = {2 + wN− 2
3 : w ∈ K}.

Since ΓN passes on the positive side of the zeroes of f
(1,b0)
N and has bounded real part,

we can use it as the contour of integration for Ib. That is,

Ib,b0 =
∫

ΓN

exp
{ 1

α

[
N(1 + bN−1/3)z −

N∑
j=1

log(z − λ̃
(b0)
j,N )

]}
dz.

Making the substitution z = 2 + wN−2/3, we have

∫
ΓN

exp
{ 1

α

[
N(1 + bN−1/3)z −

N∑
j=1

log(z − λ̃
(b0)
j,N )

]}
dz

=
∫
K

exp
{ 1

α

[
N(1 + bN−1/3)(2 + wN−2/3)−

N∑
j=1

log(2 + wN−2/3 − λ̃
(b0)
j,N )

]}
N−2/3 dw

= N−2/3 exp
{2N

α
+ 2bN2/3

α

}∫
K

exp
{bw

α
+ w

α

[
N1/3 −

N∑
j=1

log(2 + wN−2/3 − λ̃
(b0)
j,N )

]}
dw
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= N−2/3 exp
{2N

α
+ 2bN2/3

α

}∫
K

exp
{bw

α

}
f

(α,b0)
N (w)−1 dw.

Thus, we have

N2/3 exp
{
−2N

α
− 2bN2/3

α

}
|φ(b0)

N (2)|1/αIb,b0 =
∫
K

ebw/α|φ(b0)
N (2)|1/αf

(α,b0)
N (w)−1 dw (4.17)

Now, Proposition 4.25 demonstrates the convergence of the integrand of Ib in the sense
that that

ebw/α |φ
(b0)
N (2)|1/α

f
(α,b0)
N (w)

→ ebw/α |sb0(0)|1/α

s
(α)
b0

(w)
(4.18)

uniformly in compact subsets of K.

Consider w = iy. We have

∣∣∣∣ebw/α |φ
(b0)
N (2)|1/α

f
(α,b0)
N (w)

∣∣∣∣ =
N∏

j=1

∣∣∣∣2 + iyN−2/3 − λ̃
(b0)
j,N

2− λ̃j,N

∣∣∣∣−1/α

=
N∏

j=1

(
1 + y2

N4/3(2− λ̃
(b0)
j,N )2

)−1/2α

≤
2α∏

j=1

(
1 + y2

N4/3(2− λ̃
(b0)
j,N )2

)−1/2α

≤
(

1 + y2

K2
ε

)−1
,

where the last inequality follows from Eq. (4.16).

Since this is integrable over y ∈ R, we have, by dominated convergence that∫
K1∪K3

ebw/α|φ(b0)
N (2)|1/αf

(α,b0)
N (w)−1 dw →

∫
K1∪K3

ebw/α|sb0(0)|1/αs
(α)
b0

(w)−1 dw.

Moreover, since K2 is compact, and since the convergence of Eq. (4.18) holds uniformly
over it, and so the corresponding integral is also dominated and so converges. Hence,∫

K
ebw/α|φ(b0)

N (2)|1/αf
(α,b0)
N (w)−1 dw →

∫
K

ebw/α|sb0(0)|1/αs
(α)
b0

(w)−1 dw.

Combining this with Eq. (4.17), we conclude that Eq. (4.2) holds on the set Aε, and in
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particular that that convergence holds with probability at least 1− ε.

Taking ε→ 0, it follows that Eq. (4.2) holds almost surely.

We are now nearly ready to complete the proof of the main results of Section 4.2. The
last step is to address the |φ(b)

N (2)| term in Eq. (4.2), which we establish in the following
lemma:

Lemma 4.26. We have that

log|φ(b)
N (2)| = N

2 −
1 + α

6 log N +
√

α

3 log N · ZN + OP(1),

where ZN
d−→ N (0, 1).

Proof. We first expand

φ
(b)
N (2) = 2N wN (1)−1Ψ(b)

N (0)

= eN N−1/12

√
N !
NN

Ψ(b)
N (0)

= (2π)1/4eN/2N1/6(1 + o(1)) ·Ψ(b)
N (0). (4.19)

Recalling Eq. (4.7), we have

Ψ(b)
N (0) = N−1/3CN sb(0)(1 + o(1)),

where GN is a centered Gaussian with EG2
N = α

3 log N + O(1).

Hence, we can write

log|Ψ(b)
N (0)| = −1

3 log N + GN −
α

6 log N + OP(1). (4.20)

Combining Eqs. (4.20) and (4.19), we find that

log|φ(b)
N (2)| = N

2 −
1 + α

6 log N + GN + OP(1), (4.21)

from which the result follows.
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Proof of Theorem 4.6

We have that

Fα,N = α

2N
log Zα,N

= α

2N

[
log Γ

(N

α

)
−
(N

α
− 1

)
log
(βN

α

)
+ log

(Ib,b0

2πi
)]

.

On the one hand, we have by Stirling’s formula that

log Γ
(N

α

)
−
(N

α
− 1

)
log
(βN

α

)
= −N

α
+ 1

2 log N − N

α
log β + O(1).

On the other hand, Theorem 4.5 yields that

log Ib,b0 = −2
3 log N + 2N

α
+ 2bN2/3

α
− 1

α
log|φ(b0)

N (2)|+ OP(1).

Moreover, by Lemma 4.26, we write

log|φ(b0)
N (2)| = N

2 −
1 + α

6 log N +
√

α

3 log N · ZN + OP(1),

where ZN
d−→ N (0, 1).

Combining the above, we find that

Fα,N = log N

12N
+ 1

4 −
1
2 log β + bN−1/3 + 1

N

√
α

12 log N · ZN + OP(N−1).

Now, noting that

1
4 −

1
2 log β + bN−1/3 = 1

4 + 1
2bN−1/3 − 1

4b2N−2/3 + O(N−1)

= β2

4 + O(N−1)

yields

N√
α
12 log N

(
Fα,N −

β2

4 −
log N

12N

)
= ZN + oP(1).
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Proof of Theorem 4.8

This proof proceeds exactly as the proof of in the Theorem 3.1, except using a critically-
spiked underlying matrix.

In this section, we will show how Theorem 4.4 can be used to generalize the neces-
sary preliminary lemmas to the critically-spiked case, and so to conclude the result of
Theorem 4.8. Specifically, we will generalize the conclusions of Lemmas 3.3, 3.9 and 3.10
and Propositions 3.2 and 3.4

First, the following result can be established from known limiting properties of the
largest eigenvalues of a critically-spiked Gaussian matrix without using the stochastic Airy
machinery. We need to generalize only parts (ii) and (iii) of Lemma 3.3, so we present only
those results, with the numbering maintained to make the analogy clearer:

Lemma 4.27 (Equivalent of parts of Lemma 3.3). Let λ
(b)
1 ≥ · · · ≥ λ

(b)
N be the eigenvalues

of a critically-spiked Gaussian matrix. Then

(ii) For any fixed x ∈ R, there exists a constant Cx such that

E#{j : λ
(b)
j ≥ 2− xN−2/3} ≤ Cx.

(iii) For some cε, Nε and any N ≥ Nε, with probability at least 1− ε,

λ
(b)
1 − λ

(b)
2 ≥ cεN−2/3.

Proof. Both of these follow from the joint limiting distribution of (λ(b)
1 , . . . , λ

(b)
k ) described

in [BV13, Theorem 1.5].

Next, we use Eq. (4.1) to establish a limiting representation of the logarithmic derivatives
of Ψ(b)

N . In particular, for k ∈ Z≥0,

∂k
λ log Ψ(b)

N (λ) = 1{k=0}
(
−2 + α

6 log N + GN

)
+ ∂k

λsb(λ) + O(1),

∂k
λ log φ

(b)
N (2 + N−2/3λ) = 1{k=0}

(
−2 + α

6 log N +
√

α

3 log N · ZN

)
− log(2−N wN (1 + N−2/3λ/2)) + ∂k

λ log sb(λ) + O(1), (4.22)

where ZN = GN /
√

α
3 log N

d−→ N (0, 1).
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Taking k = 0, we establish the log-determinant central limit theorem:

Proposition 4.28 (Equivalent of Proposition 3.2). Let λ
(b)
1 ≥ · · · ≥ λ

(b)
N be the eigenvalues

of a critically-spiked Gaussian matrix with Dyson parameter 2/α for α ∈ {1, 2}, and let
γ = 2 + λN−2/3 for some λ ∈ R. Then

∑N
j=1 log|γ − λ

(b)
j | − N

2 −N1/3C + α+1
6 log N√

α
3 log N

d−→ N (0, 1).

Proof. This follows from Eq. (4.22), which yields

N∑
j=1

log|γ − λ
(b)
j | = log|φ(b)

N (2 + λN−2/3)|

= −2 + α

6 log N +
√

α

3 log N · ZN − log(2−N wN (z)) + log|sb(λ)|+ O(1),

where

log(2−N wN (z)) = −Nz2 + 1
12 log(Nz2)− 1

2 log N !
NN

+ O(1)

= −Nz2 + 1
6 log z + N

2 −
1
6 log N + O(1),

from which we see

log(2−N wN (1 + λN−2/3/2)) = −N

2 − λN1/3 − 1
6 log N + O(1),

log|φ(b)
N (2 + N−2/3λ)| = N

2 + λN1/3 − 1 + α

6 log N +
√

α

3 log N · ZN + OP(1),

and so conclude that

1√
α
3 log N

(
log|φ(b)

N (2 + N−2/3λ)| − N

2 − λN1/3 + 1 + α

6 log N
) d−→ N (0, 1).

On the other hand, taking k = 1, 2 yields the relevant inverse moment bounds:

Lemma 4.29 (Equivalent of Lemma 3.9). Let λ
(b)
1 ≥ · · · ≥ λ

(b)
N be the eigenvalues of a



104 CHAPTER 4. LIMITING LIKELIHOOD RATIO

critically-spiked Gaussian matrix and let C ∈ R. Then

1
N

N∑
j=1

1
2 + λN−2/3 − λ

(b)
j

= 1 + OP(N−1/3), and 1
N

N∑
j=1

1
(2 + λN−2/3 − λ

(b)
j )2

= OP(N1/3).

Proof. We use Eq. (4.22), for which we expand

∂k
z log(2−N wN (z)) = −2Nz2−k1{k≤2} + (−1)k(k − 1)!

6 z−k,

∂k
λ log(2−N wN (1 + λN−2/3/2)) = (2N2/3)−k[−2N1{k≤2} − 2λN1/31{k=1} + O(1)]

= −N1/31{k=1} + o(1).

Therefore, as in the unspiked case

1
N

N∑
j=1

1
(2 + λN−2/3 − λ

(b)
j )k

= N
2
3 k−1(−1)k+1 · ∂k

λ log φN (2 + λN−2/3)

= N
2
3 k−1(−1)k+1(N1/31{k=1} + OP(1)))

= 1{k=1} + O(N
2
3 k−1).

Lemma 4.30 (Equivalent of Lemma 3.10). Let λ
(b)
1 ≥ · · · ≥ λ

(b)
N be the eigenvalues of a

critically-spiked Gaussian matrix. Then

1
N

N∑
j=2

1
λ

(b)
1 − λ

(b)
j

= 1 + OP(N−1/3), and 1
N

N∑
j=2

1
(λ(b)

1 − λ
(b)
j )2

= OP(N1/3).

Proof. The proof proceeds exactly as in [JKOP21, Section 8.1], making use of Lemmas 4.27
and 4.29 exactly as that result makes use of Lemmas 3.3 and 3.9

It remains to demonstrate the asymptotic independence of the largest eigenvalue from
the log-determinant in the critically-spiked case:

Proposition 4.31 (Equivalent of Proposition 3.4). Define

ξ
(b)
1N =

(α

3 log N
)−1/2[N

2 −
1 + α

6 log N −
N∑

j=1
log|2− λ

(b)
j |
]
,

ξ
(b)
2N = N2/3(λ(b)

1 − 2).
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Then (ξ(b)
1N , ξ

(b)
2N ) = (X(b)

N , Y
(b)

N )+oP(1), where (X(b)
N , Y

(b)
N ) are independent OP(1) random

variables.

Proof. This proof relies on results in section 5 of [JKOP21], which are not presented in this
thesis. The relevant part of that argument is that it shows that (ξ1N , ξ2N ) = (XN , YN ) +
oP(1), where XN and YN depend on [A]N,N through ai and bi for i < N − 2N1/3 log3 N

and i > N − 2N1/3 log3 N respectively, and so are independent.
In the critically-spiked case, we apply the joint convergence of Theorem 4.4. That is,

(ΨN (λ), N1/3Ψ(b)
N (λ))EeGN

eGN

d−→ (SAiλ(0),−b SAiλ(0)− SAi′λ(0)),

from which we see that

log|Ψ(b)
N (0)| = −1

3 log N + log|ΨN (0)|+ OP(1),

ξ
(b)
1N

√
α

3 log N = ξ1N

√
α

3 log N + OP(1)

ξ
(b)
1N = XN + oP(1),

and thus can take X
(b)
N = XN .

Next, let Y
(b)

N be the largest eigenvalue of the bottom-right minor of [A](b)
N,N of size

l = 2N1/3 log3 N . Following the proof of [JKOP21, Proposition 5.3], the difference λ
(b)
1 −Y

(b)
N

is bounded in terms of the top-left (N − l)× (N − l) minor of [A](b)
N,N .

But this minor is exactly [A](N−1),(N−1), and so it follows from the subsequent analysis
of [A](N−1),(N−1) in [JKOP21, Proposition 5.3] that |λ(b)

1 −Y
(b)

N | = OP(N−K) for any K > 0.
Noticing that X

(b)
N and Y

(b)
N depend on disjoint parts of the matrix [A](b)

N,N then completes
the proof.

To complete the proof of Theorem 4.8 we follow the argument of Section 3.4.3 until
Eq. (3.36), where we reach

NFN = N

(
−3

4 −
1
2 log β + β + log N

12N

)
+
√

α

12 log N ξ
(b)
1N + b

2
√

log N ξ
(b)
2N + OP(log log N)

(4.23)

with (ξ(b)
1N , ξ

(b)
2N ) defined as in Proposition 4.31 Now, Eq. (4.4) follows from the limiting

distribution of (ξ(b)
1N , ξ

(b)
2N ) established in Propositions 3.2 and 4.31.
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Proof of Theorem 4.9

This is a straightforward application of Theorem 4.5 to Eq. (4.5), which renders

log pN (Λ; β)
pN (Λ; β0) = 2

α
N2/3(b− b0) + log Ib,b0

Ib0,b0

+ o(1)

a.s.−−→ log
∫
K ebw/αs

(α)
b0

(w)−1 dw∫
K eb0w/αs

(α)
b0

(w)−1 dw
.



Chapter 5

Algorithms for simulating RMT
quantities

Over the course of the investigations presented in this thesis, we performed many numerical
experiments and simulations involving large random matrices. Often, our particular settings
required novel algorithms for efficiently computing the specific quantities of interest to us.

This chapter contains descriptions and mathematical justifications for two such algo-
rithms: the banded representation of multi-spiked Gaussian and Wishart matrices is dis-
cussed in Section 5.1 and the simulation of an approximation to the stochastic Airy function
presented in Section 5.2.

5.1 Banded representation of multi-spiked ensembles

When investigating quantities computed from random matrices, it is often useful to sample
from the distribution of the eigenvalues of a high-dimensional random matrix ensemble. This
can be done naively by drawing a matrix from the ensemble and computing its eigenvalues.
However, since the computation of eigenvalues of an unstructured n × n matrix requires
O(n3) operations and O(n2) allocations, this becomes impractical even for moderate n

In [DE02] Dumitriu and Edelman described ensembles of tridiagonal matrices whose
eigenvalue distributions match those of Gaussian and Wishart matrices. Since the eigen-
decomposition of an n× n tridiagonal matrix can be computed with O(n2) operations and
O(n) allocations, this allows us to sample eigenvalues of much larger Gaussian and Wishart
matrices.

107
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In this section, we generalize the results of [DE02] to Gaussian and Wishart matrices
with k spikes. In particular, we define ensembles of banded matrices with bandwidth 2k−1
whose eigenvalues distributions match those of k-spiked Gaussian and Wishart matrices.

All of these algorithms are implemented in my Julia library RandomMatrixDistributions,
which can be found in the Julia package repository. The code is available at:
github.com/damian-t-p/RandomMatrixDistributions.jl.

5.1.1 Notation and definitions

Banded matrices: Let l, u ≤ n. An n× n matrix M is (l, u)-banded if it has only zeroes
below the lth subdiagonal or above that uth superdiagonal. That is,

Mi,i+k = 0 if k > u or k < l.

We also use bandk(M) to denote the kth band of M . That is, for k such that−n ≤ k ≤ n,
we have the (n− |k|)-element vector given by

bandk(M) =

(M1,1+k, M2,2+k, . . . , Mn−k,n) if k ≥ 0,

(M1−k,1, M2−k,2, . . . , Mn,n+k) if k < 0.

Block matrices: Throughout this section, for a matrix M we will use the notation
[M ]i:i′,j:j′ to denote the (i′ − i + 1) × (j′ − j + 1) submatrix of M whose (l, m) entry is
([M ]i:i′,j:j′)l,m = Mi+l−1,j+m−1.

We will also sometimes record for clarity the dimensions of the block of a block matrix
outside the matrix delimiters, for example, the following shows a decomposition of a p× d

matrix M into d× d, d× (n− d), (p− d)× d and (p− d)× (n− d) blocks:

M =


d n−d

d M11 M12

p−d M21 M22

.

Complex Gaussian distribution: This section deals extensively with both real and com-
plex Gaussian distributions. To unify this presentation, we will use the notation Nβ(µ, σ2)
indexed by the Dyson parameter β.

When β = 1, this denotes the usual Gaussian distribution. When β = 2, then for σ ≥ 0

https://github.com/damian-t-p/RandomMatrixDistributions.jl
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and µ ∈ C, we use N2(µ, σ2) to denote the distribution of

σ√
2

(Z1 + iZ2) + µ,

where Z1, Z2 are independent real standard Gaussians.
With these definitions, for β = 1, 2, if Z is an n-dimensional random vector with iid

Nβ(0, σ2) entries, then

∥Z∥ ∼ σ√
β

χβn. (5.1)

Remark 5.1. In this section, all proofs will only be done for the β = 2 case. The β = 1
case is always entirely analogous, with “GOE” and “orthogonal” matrices replacing “GUE”
and “unitary” matrices throughout.

5.1.2 Preliminary results

Lemma 5.2. Let β = 2 (resp. β = 1). Let X be a p × n matrix with iid Nβ(0, 1) entries.
Let Q be an p× p unitary (resp. orthogonal) random matrix.

If Q is independent of X, then QX
d= X, and moreover Q is independent of QX.

Proof. This follows from conditioning on Q, whereupon we use the deterministic version of
this result that (QX|Q) d= X. Since this distribution has no dependence on Q, the result
follows.

Proposition 5.3 (QR decomposition of a matrix of iid Gaussians). Let β ∈ {1, 2} and let
X be a p× n matrix whose entries are iid with Nβ(0, 1) distribution.

Then, for any d such that p ∧ n ≤ d ≤ p, X can be decomposed as X = QR, where

1. Q is a p× d matrix with orthonormal columns,

2. R is a d× n matrix whose entries strictly below the main diagonal are all 0,

3. The non-zero entries of R are independent with distributions given by

Rij ∼


1√
β

χβ(p−i+1) if i = j,

Nβ(0, 1) if i < j.
(5.2)
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Proof. For d = p, we construct Q from Householder reflections. Namely, if x1, . . . , xn are
the columns of X, define Q1 = I − 2vv∗/∥v∥2, where v = x1 − ∥x1∥e1 so that Q1 is unitary
and Q1x1 = ∥x1∥e1.

Moreover for i ≥ 2, since Q1 is unitary and independent of xi, the Q1xi are iid Nβ(0, Ip)
random vectors. That is, the entries of Q1X are independent with distributions given by

[Q1X]ij ∼



1√
β

χβp if i = j = 1,

0 if j = 1, i ≥ 2,

Nβ(0, 1) otherwise.

We repeat this process for the lower-right submatrix [Q1X]2:n,2:p, calling the correspond-
ing Householder reflection Q̃2 and defining the unitary matrix

Q2 =

1 0
0 Q̃2

 .

Continuing in this way, we have that Q := (Qp · · ·Q1)∗ is a unitary matrix such that
X = QR, where Q and R satisfy the conclusions of the proposition.

When n < p, since R has only zeroes below its main diagonal, [R](p+1):n,1:p = 0. Hence,
for any d such that n ≤ d ≤ p if we define Q′ = [Q]1:p,1:d and R′ = [R]1:d,1:n, then we have

X = QR = Q′R′,

which completes the proof.

5.1.3 Gaussian matrices

Let X is a G(U/O)E matrix and d ∈ Z>0. If H is a d×d diagonal matrix and V is a matrix
in Rn×d or Cn×d in the GOE and GUE cases respectively with orthonormal columns, then
we say that

X +
√

nV HV ∗

is a d-spiked G(U/O)E matrix with spikes H.
By rotational invariance, if we are interested in the eigenvalues of such matrices, it is
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enough to consider V whose columns are given by Vi = ei. That is,

X +


d n−d

d
√

nH 0
n−d 0 0

. (5.3)

This section is then devoted to finding banded matrices whose eigenvalues match those
of matrices of the form Eq. (5.3).

Theorem 5.4. Let X be an n × n G(U/O)E matrix with corresponding Dyson parameter
β and let 1 ≤ d ≤ n

Then there exists an n× n Unitary or Orthogonal block-diagonal matrix P

P :=


d n−d

d I 0
n−d 0 P0

, (5.4)

such that X̃ defined by X̃ := P ∗XP is a Hermitian (d, d)-banded n × n with independent
lower-triangular entries whose distributions are given by

X̃j,j−k ∼


N1(0, 2/β) if k = 0,

Nβ(0, 1) if 1 ≤ k < d,

1√
β

χβ(n−d−1+j) if k = d.

(5.5)

Proof. We proceed by induction on d, with the base case d ≤ n understood to be trivial
with X̃ = X and P = I.

Suppose that a banded decomposition as described in the theorem statement exists when
n ≤ kd for some k ∈ Z>0 and consider n such that kd < n ≤ (k + 1)d. Then, decompose X

as a block matrix

X =


d n−d

d X11 X∗
21

n−d X21 X22

,

where X11, X21, X22 are d× d, (n− d)× d and (n− d)× (n− d) matrices respectively.
Let X21 = QR be the QR decomposition as described in Proposition 5.3. Now, Q∗X22Q
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is an (n− d)× (n− d) GUE matrix. Since n− d ≤ kd, under the induction hypothesis, let
P0 a be unitary block-diagonal (n− d)× (n− d) such that [P0]1:d,1:d = I (if n− d ≤ d, then
P0 is simply taken to be the identity) such that

X̃22 = P ∗
0 (Q∗X22Q)P0

satisfies Eq. (5.5). Notice that, since [P0]1:d,1:d = I while [R](d+1):(n−d) = 0, we have
that P ∗

0 R = R. Moreover, since X22 is a GUE independent of X21 and so of Q, by
Lemma 5.2,Q∗X22Q and so X̃22 is independent of (X11, X21), and so also of R.

We now have thatId 0
0 QP0

∗X11 X∗
21

X21 X22

Id 0
0 QP0

 =

 X11 (P ∗
0 Q∗X21)∗

P ∗
0 Q∗X21 P ∗

0 (Q∗X22Q)P0


=

X11 R∗

R X̃22

 .

By Proposition 5.3 and the induction hypothesis, the distributions of the entries of R

and X̃22 are such that this matrix satisfies Eq. (5.5), completing the proof.

Corollary 5.5. Let X be an n× n G(U/O)E matrix with corresponding Dyson parameter
β and let 1 ≤ d ≤ n

Let X̃ be a Hermitian (d, d)-banded n × n matrix whose independent lower-triangular
entries have distributions given by

X̃j,j−k ∼


N1(0, 2/β) if k = 0,

Nβ(0, 1) if 1 ≤ k < d,

1√
β

χβ(n−d−j+1) if k = d.

Define the block matrix

H =


d n−d

d A 0
n−d 0 0

,

where A is a d× d Hermitian matrix and let 1 ≤ d ≤ p.
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Then the eigenvalues of X̃ + H have the same distribution as those of X + H.

Proof. Let X̃, P be as in Theorem 5.4. Notice that, since [P ]1:d,1:d = I, while [H]1:d,1:d is
the only non-zero part of that matrix, HP = P ∗H = H. Therefore,

X̃ + H = P ∗XP + P ∗HP

= P ∗(X + H)P.

The result then follows from the fact that P is unitary or orthogonal.

The above corollary gives a recipe for sampling banded matrices whose eigenvalue dis-
tributions coincide with Gaussian matrices with d spikes.

We detail this procedure in Algorithm 1. The algorithm requires the following functions,
whose naming conventions follow those of the corresponding R functions so far as is practical:

• length(v): returns the length of the vector v.

• newBandedMatrix(n, l, u): creates an empty n× n (l, u)-banded matrix.

• rnorm(n, dyson): samples a vector of n independent Ndyson(0, 1) random variables.

• rchisq(df): samples a chi-squared random variables with df degrees of freedom. If df
is a vector, samples a vector whose components are independent χ2

dfi
random variables.

5.1.4 Wishart matrices

We use the term d-spiked Wishart matrix to denote the sample covariance of Gaussian data
whose covariance matrix differs from the identity by a rank-d perturbation.

Due to rotational invariance of the Gaussian distribution, it is enough to consider diag-
onal covariance matrices Σ = I + H∗H, where H is a rank-d diagonal matrix.

If X is a p× n matrix of iid Nβ(0, 1), then the eigenvalues of the matrix


p p−d

p I + H 0
p−d 0 I

XX∗


p p−d

p I + H∗ 0
p−d 0 I

 (5.6)
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Algorithm 1 Sample a (d, d)-banded n × n matrix whose eigenvalues have the same dis-
tribution as those of a Gaussian matrix with spikes h1, . . . , hd.

1: procedure rBandedGaussian(n, h, β)
2: d← length(h)
3: W ← newBandedMatrix(n, d, d)
4: band0(W )← rnorm(n, dyson = 1) ·

√
2/β

5: for j ∈ {1, . . . , d} do
6: Wii ←Wii + hi

√
n

7: end for
8: for k ∈ {1, . . . , d− 1} do
9: bandk(W )← rnorm(n− k, dyson = β)

10: band−k(W )← bandk(W )∗

11: end for
12: bandd(W )←

√
rchisq(df = β · seq(n− d, 1, by = −1)/β)

13: band−d(W )← bandd(W )
14: return W
15: end procedure

have the same joint distribution as the eigenvalues of a covariance matrix of Nβ(0, I +H∗H)
data. We will then investigate banded matrices whose eigenvalue distributions match those
of Eq. (5.6).

Theorem 5.6. Let X be an n×p matrix with iid Nβ(0, 1) entries. Suppose that d ≤ p ≤ n.
Then there exist random matrices U , V and X̃ such that X̃ = U∗XV and

• U is a unitary or orthogonal and block-diagonal p× p matrix such [U ]1:d,1:d = I,

• V is an n× p matrix with orthonormal columns, and

• X̃ is a (d, 0)-banded p× p matrix with independent entries whose distribution is given
by

X̃j,j−k ∼



1√
β

χβ(n−k) if k = 0,

Nβ(0, 1) if 1 ≤ k < d,

1√
β

χβ(p−d−1+j) if k = d.

(5.7)
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Proof. We proceed by induction on p. For the base case, where p ≤ d, take U = Ip and

V =


p

p I

n−p 0

.

Next, suppose that a decomposition described in the theorem statement is available for
all matrices of Gaussians such that p ≤ kd and let p be such that suppose that kd < p ≤
(k + 1)d. Decompose X vertically into a d× n and (p− d)× n block:

X =


n

d X1

p−d X2

.

Let X∗
1 = QR be a QR decomposition as described in Proposition 5.3, where Q and R

are n× p and p× d matrices respectively. Denote the top d× d submatrix [R]1:d,1:d by R0.
We then have that

XQ =


p

d R∗

p−d X2Q

.

Write X ′
2 := X2Q. Since Q has orthonormal columns and is independent of X2, we have

by Lemma 5.2 that X ′
2 is a (p− d)× n matrix of iid standard Gaussians independent of R.

Decomposing X ′
2 horizontally into a (p − d) × d and (p − d) × (n − d) block according

to X ′
2 = (X ′

21, X ′
22), we can write XQ as a block matrix:

XQ =


d p−d

d R∗
0 0

p−d X ′
21 X ′

22

.

Now, let X ′
21 = US be a QR decomposition as per Proposition 5.3 with U and S being

(p− d)× (p− d) and (p− d)× d matrices respectively. We then haveId 0
0 U∗

XQ =

R0 0
S U∗X ′

22

 .
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Once again, U∗X ′
22 is a (p− d)× (p− d) matrix of iid standard Gaussians independent

of R0 and S. By the induction hypothesis, let Ũ , Ṽ be unitary (p − d) × (p − d) matrices
such that X̃22 = Ũ∗(U∗X ′

22)Ṽ , where X̃22 satisfies Eq. (5.7).
We then have that Id 0

0 ŨU∗

XQ

Id 0
0 Ṽ ∗

 =

R0 0
S X̃22

 .

But by Lemma 5.2 and the induction hypothesis, S and X̃22 have the right structure
for these matrices to satisfy the conclusions of the theorem.

Corollary 5.7. Let X be a p× n matrix with iid Nβ(0, 1) entries.
Let X̃ be a (d, 0)-banded p × p matrix with independent entries whose distribution is

given by

X̃j,j−k ∼



1√
β

χβ(n−k) if k = 0,

Nβ(0, 1) if 1 ≤ k < d,

1√
β

χβ(p−d−1+j) if k = d.

Define the block matrix

H =

A 0
0 I

 ,

where A is a d× d matrix.
Then the eigenvalues of HX̃X̃∗H∗ have the same distribution as those of HXX∗H∗.

Proof. Let X̃, U, V be as in Theorem 5.6. Since [U ]d×d = I and [H](p−d)×(p−d) = I, we have
that U commutes with H.

Therefore, we have

HXX∗H∗ = H(UX̃V ∗)(UX̃V ∗)∗H∗

= UHX̃X̃∗H∗U∗,

from which the result follows.
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As with Corollary 5.5, we use the above result to define a procedure for sampling (d, d)-
banded matrices whose eigenvalues have the same distribution as those of a Wishart with
d spikes.

The procedure is implemented in Algorithm 2 using the same functions as required for
Algorithm 1.

Algorithm 2 Sample a (d, d)-banded p× p matrix whose eigenvalues have the same distri-
bution as those of a p× p Wishart matrix with n degrees of freedom and spikes h1, . . . , hd.

1: procedure rBandedWishart(n, p, h, β)
2: d← length(h)
3: W ← newBandedMatrix(n, d, 0)
4: band0(W )←

√
rchisq(df = β · seq(n, n− p + 1, by = −1))/β

5: for k ∈ {1, . . . , d− 1} do
6: band−k(W )← rnorm(n− k, dyson = β)
7: end for
8: bandd(W )←

√
rchisq(df = β · seq(p− d, 1, by = −1))/β

9: for i ∈ {1, . . . d} do
10: for j ∈ {1, . . . , i} do
11: Wij ←Wij ·

√
1 + hi

12: end for
13: end for
14: return WW ∗

15: end procedure

5.2 Stochastic Airy function

Following [LP21], eq. 1.5, fix an [a, b] ⊆ R and a realisation B of a Brownian motion. We
recall from Definition 4.1 the definition of the stochastic Airy equations over [a, b] with
respect to the Brownian motion B:

Define the kernel

Uλ(t, s) = t2 − s2

2 +
√

2γ(B(t)−B(s)) + λ(t− s)

= U0(t, s) + λ(t− s).
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For t ∈ [a, b], the system of integral equations

Φλ(t) = c2(λ) + c1(λ)Uλ(t, b) +
∫ t

b
Uλ(t, u)Φλ(u) du, (5.8)

φλ(t) = c1(λ) +
∫ t

b
Φλ(u) du, (5.9)

are the stochastic Airy equations.
In the above, it will typically be the case that t < b, so it is important to note that the

integrals are signed.
This section describes algorithms for efficiently solving the stochastic Airy equations for

a fixed realization of B. The code for the implementation of these algorithms is available
at github.com/damian-t-p/StochasticAiry.jl.

5.2.1 Approximating the initial conditions

An important issue when simulating the stochastic Airy function is that the values c1(λ), c2(λ)
are defined only implicitly, as they are chosen so that SAiλ(t) remains bounded as t→∞.
Following the notation of [LP21], we instead find solutions (ϕ′

λ, ϕλ) to the stochastic Airy
equations with initial conditions given by

c1(λ) = Ai(λ + b), c2(λ) = Ai′(λ + b). (5.10)

We will refer to these as the deterministic Airy initial conditions. Now, [LP21, Theorem
9.5] states that, for ε ∈ (0, 1/6) and N large, if b = (log N)1−ε, then there exists a Gaussian
process X as well as functions Θλ and χλ(t) such that we can write

ϕλ(t) = (Θλ SAiλ(t) + χλ(t)) exp{
∫ b

0 X (u) du}
E exp{

∫ b
0 X (u) du}

,

where, for any compact K ⊆ C, there exists a constant C such that with probability at
least 1− e−b, it holds that, for ℓ ∈ {1, 2},

sup
λ∈K
|∂ℓ−1

λ Θλ − 1| ≤ Cb−ε/6, sup
λ∈K,t∈[−eb,b/2]

|∂ℓ−1
λ ∂k

t χλ(t)| ≤ CN ℓεe−b3/2/5.

Notice that the time-dependent error term χλ is asymptotically much smaller than the
space-dependent error term Θλ.

https://github.com/damian-t-p/StochasticAiry.jl
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This suggests that for a fixed λ, ϕλ(t) is, up to a constant independent of t, a good ap-
proximation of SAiλ(t). However, b must be very large for ϕλ(0) to be a good approximation
of SAiλ(0) up to a constant independent of λ.

In the remainder of this section, we detail how to numerically solve these (ϕ′
λ, ϕλ).

5.2.2 Solving the stochastic Airy equation as a function of time

In this section, we fix λ ∈ C and a large b and discuss how to solve for ϕ solving the
stochastic Airy equations with the deterministic Airy initial conditions given by Eq. (5.10).

In particular, we choose a < b and fix B, a realized Brownian path over the interval
I = [a, b] with Bb = 0. For such a fixed B, we see that Eq. (5.8) is a Volterra equation of
the second kind with a continuous kernel.

Hence, we can solve it with a standard method, by approximating the integral in
Eq. (5.8) with a trapezoidal integration. To this end, we define a grid τ over [a, b] as
either a strictly increasing sequence a = t1 < · · · < tn = b or a strictly decreasing sequence
b = t1 > · · · > tn = a.

For this grid, the corresponding differences are then

∆tk =

0 if k ∈ {1, n + 1},

tk − tk−1 otherwise.

Notice that these can be either positive or negative depending on whether τ is increasing
or decreasing.

Last, we will say that a function f : I → C satisfies a γ-Hölder condition with γ-Hölder
modulus C if, for any s, t, we have

|f(s)− f(t)| ≤ C|s− t|γ .

With this, we establish the following control for errors in trapezoidal integration of
γ-Hölder functions that we will need for later results.

Lemma 5.8 (Trapezoidal integration for γ-Hölder functions). Let I ⊆ R be an interval
and {t1, . . . , tn} a grid covering I.

Let {hx : I → C}x∈X be a collection of γ-Hölder functions with common γ-Hölder mod-
ulus C and let {nx}x be a set of integers in {1, . . . , n}.
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If Hx is the trapezoidal approximation to
∫ tnx

t1 hx(t) dt given by

Hx =
nx∑
i=1

hx(ti)
∆ti + ∆ti+11{i≤nx}

2 ,

then, for any x ∈ X ,

∣∣∣∫ tnx

t1
hx(t) dt−Hx

∣∣∣ ≤ 2C
nx∑
i=1
|∆ti|1+γ .

Proof. Let h̃x be the linear interpolation of hx along the grid. We then have that, for any
t falling between ti−1 and ti that,

|hx(t)− h̃x(t)| ≤ |hx(t)− hx(ti−1)|+ |h̃x(t)− h̃x(ti−1)|

≤ |hx(t)− hx(ti−1)|+ |hx(ti)− hx(ti−1)|

≤ 2C∆tγ
i .

But since Hx is the integral of h̃x, we have that

∣∣∣∫ tnx

t1
hx(t) dt−Hx

∣∣∣ ≤ nx∑
i=2

∫ ti

ti−1
|hx(t)− h̃x(t)| dt

≤ 2C
nx∑
i=1

∆t1+γ
i .

We then use this result to establish the following theorem controlling the error in the
solutions to a discretized version of a Volterra equation where the forcing function and
kernel are γ-Hölder.

Theorem 5.9. Let I = [a, b] be an interval. Let f : I → C, K : I × I → C be bounded
functions such that K(t, t) = 0 for all t ∈ I.

Suppose that there exists a C > 0 and γ ∈ [0, 1] such that, for all s, t ∈ I,

|f(s)− f(t)|, sup
u∈I
|K(u, s)−K(u, t)| ≤ C|s− t|γ . (5.11)

Let b = t1 > · · · > tn = a be a grid and suppose that φ, φ̃ : T → C are functions that
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solve the following equations:

φ(tk) = f(tk) +
∫ tk

t1
K(tk, u)φ(u) du, (5.12)

φ̃(tk) = f(tk) +
k−1∑
i=1

K(tk, ti)φ̃(ti)
∆ti + ∆ti+1

2

for all 1 ≤ k ≤ n. If max1≤k≤n|∆tk| → 0 as n→∞, then

max
1≤k≤n

|φ(tk)− φ̃(tk)| = O(n max
1≤k≤n

|∆tk|1+γ).

Proof. For functions of one or two variables, we will write ∥f∥∞ = supt∈T |f(t)| and ∥K∥∞ =
sups,t∈I |K(s, t)|. Notice that by Eq. (5.12), we have that, for all t ∈ I,

|φ(t)| ≤ ∥f∥∞ + ∥K∥∞
∫ t

t1
φ(u) du,

from which we conclude that

|φ(t)| ≤ ∥f∥∞ exp{∥K∥∞(t− t1)}

≤ ∥f∥∞ exp{∥K∥∞(b− a)},

and so that ∥φ∥∞ <∞.

Now, we have for any t, s ∈ I with t > s that

φ(t)− φ(s) = f(t)− f(s) +
∫ s

t1
(K(t, u)−K(s, u))φ(u) du +

∫ t

s
K(t, u)|φ(u)|du,

|φ(t)− φ(s)| ≤ C(1 + (tn − t1)∥φ∥∞)|t− s|γ + ∥K∥∞∥φ∥∞|t− s|

≤ C ′|t− s|γ

for a sufficiently large C ′ that is uniform in t, s. That is, φ is γ-Hölder.

Let εk = φ(tk)− φ̃(tk) be the error in estimating φ by φ̃ at tk. We then have that

εk =
∫ tk

t1
K(t, u)φ(u) du−

k−1∑
i=1

K(tk, ti)φ̃(ti)
∆ti + ∆ti+1

2

=
k−1∑
i=1

K(tk, ti)
∆ti + ∆ti+1

2 εi +
k−1∑
i=1

[∫ ti+1

ti

K(tk, u)φ(u) du− (K(tk, ti)φ(ti) + K(tk, ti+1)φ(ti+1))∆ti

2
]
.
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Now, by the γ-Hölder conditions for K and φ, we have that, for any x ∈ I,

|K(x, t)φ(t)−K(x, s)φ(s)| ≤ ∥K∥∞|φ(t)− φ(s)|+ ∥φ∥∞|K(x, t)−K(x, s)|

≤ (∥K∥∞C ′ + ∥φ∥∞C)|t− s|γ ,

so that as a function of t, K(x, t)φ(t) is γ-Hölder uniformly in x ∈ I. But this means that,
by Lemma 5.8, we can write

|εk| ≤
k−1∑
i=1
|K(tk, ti)|

|∆ti + ∆ti+1|
2 |εi|+

k−1∑
i=1

C ′′|∆ti|1+γ ,

where the last line holds with some constant C ′′ > 0 from the fact that φ and K are
γ-Hölder and bounded.

But now, writing ∆tmax = max1≤k≤n|∆tk|, we see that

|εk| ≤ ∥K∥∞∆tmax

k−1∑
i=1

(
|εi|+

C ′′

∥K∥∞
∆tγ

max

)
. (5.13)

One can verify by induction that for any sequence (ak)k of non-negative real numbers
that satisfies ak ≤ C

∑k−1
i=1 (ak + d) for some constants C, d > 0, we have that

ak ≤ [(C + 1)k−1 − 1]d ≤ Cdk,

where the second inequality holds when C < 1. This fact, together with Eq. (5.13) yields
that max1≤k≤n|εk| = O(n∆t1+γ

max).

Solving the discretized equation

Notice that Eq. (5.8) is of the form of Eq. (5.12), with

K(t, s) = Uλ(t, s), (5.14)

f(t) = c2(λ) + c1(λ)Uλ(t, b). (5.15)

Moreover, for any γ ∈ [0, 1/2) it is almost surely the case that B is γ-Hölder continuous.
Hencef and K satisfy Eq. (5.11) for any γ ∈ [0, 1/2). Therefore, Theorem 5.9 states that
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to approximate ϕ′
λ, it suffices to solve the equation

ϕ̃′
λ(tk) = c2(λ) + c1(λ)Uλ(tk, t1) +

k∑
i=1

Uλ(tk, ti)
∆ti + ∆ti+1

2 ϕ̃′
λ(ti). (5.16)

Having done this, we can also approximate ϕλ with ϕ̃λ defined by the following trape-
zoidal rule equivalent of Eq. (5.9):

ϕ̃λ(tk) = c1(λ) +
k∑

i=1

∆ti + ∆ti+11{i+1<k}
2 ϕ̃′

λ(ti). (5.17)

From now on, we will call Eqs. (5.16) and (5.17) the τ -discretized stochastic Airy equa-
tions.

To this end, define the vectors ϕ′
λ, ϕ, cλ ∈ Cn and matrix Kλ ∈ Cn×n by

ϕ′
λ,i = ϕ̃′

λ(ti),

cλ,i = c2(λ) + c1(λ)Uλ(ti, t1),

Kλ,ij =

 Uλ(ti, tj)∆tj+∆tj+1
2 if i > j,

0 otherwise.

In this way, we can write Eq. (5.16) as

ϕ′
λ = cλ + Kλϕ′

λ,

ϕ′
λ = (I −Kλ)−1cλ, (5.18)

and Eq. (5.17) as

ϕλ = c1,λ1 + Tϕ′
λ,

where T is the n× n matrix corresponding to the trapezoidal rule given by

Tij =


∆tj/2 if i = j,

(∆tj + ∆tj+1)/2 if i > j,

0 otherwise.
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We then have by Theorem 5.9 and Lemma 5.8 that

max
1≤k≤n

|ϕλ,k − ϕλ(tk)|, max
1≤k≤n

|ϕ′
λ,k − ϕ′

λ(tk)| = O(n max
1≤k≤n

|∆tk|1+γ).

An example

Figure 5.1 shows a simulation of (ϕ̃′
0(t), ϕ̃0(t)) with the following parameter values and an

evenly-spaced grid τ :

Parameter Value

β 1
[a, b] [−20, 10]

n 3000

Since the grid is even, we have that |∆tj | = (b− a)/n, and so the approximation has a
uniform error of order O(n−1/2+ε) for any ε > 0.

We see that ϕ̃0(t) is qualitatively similar to Ai(t) but with Brownian continuity proper-
ties.

5.2.3 Efficiently solving the stochastic Airy equation over a region in the
complex plane

In the applications given in Chapter 4, the quantity of interest is the function λ 7→ SAiλ(0)
— that is, the stochastic Airy function as a function of λ.

In order to simulate this, we would like to compute (ϕ̃′
λ(0), ϕ̃′

λ(0)) for a single realization
B of a Brownian motion and for all λ ∈ Λ for some large set Λ. According to Eq. (5.18), this
requires the computation of (I −Kλ)−1cλ for each λ. Naively, this would require O(|Λ|n2)
operations, which becomes impractical when |Λ| is large.

In this subsection, we will detail an approach that takes advantage of the structure of
Kλ and cλ to perform these computations in time O(n3 + |Λ|n).

Proposition 5.10. Let I = [0, b] be an interval with corresponding grid τ = {b = t1 >

· · · > tn = 0} and Λ ⊆ C.
Let (ϕ̃′

λ, ϕ̃λ) be the solutions to the τ -discretized stochastic Airy equations given in
Eqs. (5.16) and (5.17) with the deterministic Airy initial conditions Eq. (5.10). Then,
for m ∈ {1, 2, 3} there exist:
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Figure 5.1: Realisation of (ϕ′
0(t), ϕ0(t)) compared to the Airy function.
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• vectors u ∈ C2 and vm ∈ Cn,

• scalar functions Cm : C→ C,

• matrices U ∈ Cn×2 and N ∈ Cn×n, where N is strictly lower-triangular;

such that, for all λ ∈ Λ, it holds thatϕ̃′
λ(0)

ϕ̃λ(0)

 = u +
3∑

m=1

n−1∑
k=0

Cm(λ)λk ·UTNkvm. (5.19)

Proof. From the results of the previous section, we can writeϕ̃′
λ(0)

ϕ̃λ(0)

 =

 0
c1(λ)

+

eT
n

tT

ϕ′
λ (5.20)

=

 0
c1(λ)

+

eT
n

tT

 (I −Kλ)−1cλ, (5.21)

where en ∈ Rn is the standard basis vector with a 1 in its nth entry, and where t ∈ Rn is
the vector corresponding to trapezoidal integration over the grid τ . That is,

tj = ∆tj + ∆tj+1
2 .

We proceed by investigating the dependence on λ of cλ and Kλ.
Decomposition of cλ: Recall that

cλ,i = c2(λ) + c1(λ)Uλ(ti, t1)

= c2(λ) + c1(λ)U0(ti, t1) + c1(λ)λ(ti − t1),

so that we can write

cλ = C1(λ)v1 + C2(λ)v2 + C3(λ)v3, (5.22)

for vectors vm ∈ Cn that do not depend on λ defined by

v1,i = 1,

v2,i = U0(ti, t1),
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v3,i = ti − t1

and λ-dependent scalar functions Cm defined by

C1(λ) = c2(λ),

C2(λ) = c1(λ),

C3(λ) = λc1(λ).

Decomposition of Kλ: Notice that Kλ can be written as

Kλ = K0 + λL,

where L is a strictly lower-triangular n× n matrix with

Lij =

(ti − tj)∆tj+∆tj+1
2 if i > j,

0 otherwise.

Using this identity, we can write the inverse as

(I −Kλ)−1 = (I −K0 − λL)−1

= (I −K0)−1(I − λL(I −K0)−1)−1.

Define N = L(I −K0)−1. Since L is strictly lower-triangular and (I −K0)−1 is lower-
triangular, N is strictly lower triangular. We can thus take advantage of the fact that it is
nilpotent, with Nn = 0, concluding that

(I − λN)−1 =
n−1∑
k=0

λkNk. (5.23)

Combining: Putting together Eqs. (5.22) and (5.23), we find that

(I −Kλ)−1cλ = (I −K0)−1
[n−1∑

k=0
λkNk

][ 3∑
m=1

Cm(λ)vm

]
.
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Hence, if we define

U = (I −KT
0 )−1(en t),

then indeed eT
n

tT

 (I −Kλ)−1cλ = UT
[n−1∑

k=0
λkNk

][ 3∑
m=1

Cm(λ)vm

]

=
3∑

m=1

n−1∑
k=0

Cm(λ)λkUTNkvm.

Remark 5.11. The above proposition gives a recipe for efficiently computing (ϕ̃′
λ(0), ϕ̃λ(0))λ∈Λ.

That is,

1. Compute U = (I −KT
0 )−1(en t) by back-substitution (O(n2) operations, O(n2) allo-

cations).

2. Compute N = L(I − KT
0 )−1 by back-substitution (O(n3) operations, O(n2) alloca-

tions)

3. For each k ∈ {1, . . . , n− 1} and m ∈ {1, 2, 3} (O(n) iterations ):

(a) Compute Nkvm by multiplying N ·Nk−1vm, where Nk−1vm is stored from the
previous iteration (O(n2) operations, O(n) allocations)

(b) Compute UTNkvm (O(n) operations, O(1) allocations)

4. For each k ∈ {1, . . . , n− 1}, m ∈ {1, 2, 3} and λ ∈ Λ (O(|Λ|n) iterations):

(a) Compute Cm(λ)λkUTNkvm (O(1) operations, O(1) allocations). In this step,
λk can be very large while UTNkvm is very small. Hence, in practice, it is
convenient to compute exp{k log λ + log(UTNkvm)}.

(b) Add Cm(λ)λkUTNkvm to a running total (O(1) operations, O(1) allocations).

Compiling the above steps, we find the algorithm requires O(n3 + |Λ|n) operations and
O(n2 + |Λ|n) allocations.

When |Λ| is larger than n, for example when Λ is a fine 2-dimensional grid in C, this is
faster then the naive algorithm, which runs in O(|Λ|n2) time.
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I have implemented this algorithm in the Julia programming language, and the code is
available at https://github.com/damian-t-p/StochasticAiry.jl.

An example

Figures 5.2 and 5.3 show a simulation of λ 7→ ϕ̃λ(0) with the following parameter values:

Parameter Value

β 1
[a, b] [0, 10]

n 2000

over a uniform grid τ and a 500× 1000 grid of λ values ranging from −8− 8i to 6 + 8i.
Note that in this case, |Λ| ≫ n, so the efficient algorithm is required to compute ϕ̃λ(0)

at the desired resolution.
Figure 5.2a makes clear the zeroes of φλ(0), which correspond to an Airy point field. In

Fig. 5.3b, we observe steepest-descent behaviour closely mirroring that of Ai(z) - namely
quadratic-like behaviour near the critical point with tapers off to rays emanating at angles
of roughly ±2π/3 from the positive real axis.
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(a) log|ϕ̃λ(0)|

(b) log|Re ϕ̃λ(0)|

(c) log|Im ϕ̃λ(0)|

Figure 5.2: Contours of quantities associated with a realisation of λ 7→ ϕ̃λ(0)
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(a) sign(Re ϕ̃λ(0))

(b) sign(Im ϕ̃λ(0))

Figure 5.3: Signs of real and imaginary parts of a realisation of λ 7→ ϕ̃λ(0). Black regions
are negative and yellow regions are positive
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