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I reject your RCT and substitute my own
A workshop on inverse propensity weighting

Damian Pavlyshyn1

1Disease Elimination Program, Burnet Institute, Melbourne

7 July, 2023
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Acknowledgement of country

I recognise the Boon Wurrung people of the Kulin Nations as the traditional
owners of the land on which we meet today, and acknowledge that they never

ceded sovereignty over it.

I pay my respect to elders past and present, and extend that respect to all first
nations people.
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How to perform an IPW analysis
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Case study: An observational drug trial

A disease, indicated by low values of a biomarker has an existing, well-established
treatment B.
An experimental treatment A has been given to some patients.
Question: Is Amore effective than B at increasing this biomarker?
Target trial:

1 Assign each participant to a treatment and control group at random, giving
the control group treatment B and the treatment group treatment A.

2 For each participant i, take a baseline and post-treatment measurement of
the biomarker. The outcome is the difference between these
measurements, which we call Yi.

3 Compare the average of the outcomes Yi in the treatment group with the Yi
in the control group.
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The data

First few rows of the measurements:

PID Arm Baseline Follow-up Outcome
1 Treatment 1.42 1.64 0.21
2 Control 1.42 1.66 0.24
3 Treatment 1.86 1.76 -0.10
4 Treatment 2.84 2.57 -0.26
5 Control 0.49 0.96 0.46
6 Treatment 1.73 1.21 -0.52
...

...
...

...
...

Summary table of the outcomes by trial arm:

Arm Count Average outcome
Control 112 0.02
Treatment 136 0.10
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Histogram of outcomes by trial arm

Estimated ATE Standard error 95% CI
0.073 0.032 [0.0095, 0.14]
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Wait ... what are we even estimating?

The potential outcomesmodel: Each individual i, has a “treatment outcome”
and a “control outcome”. The treatment effect TEi is the difference between
outcomes for this individual.

The average treatment effect ATE is the average of these treatment effects:

ATE =
1

n

n∑
i=1

TEi.

Interpretation: “If all participants were assigned to the treatment arm, how
much would the outcome change compared to if all participants were assigned to
the control arm?”
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Ideal data

We can imagine a table with both potential outcomes for each individual

PID Arm Control outcome Treatment outcome Treatment effect
1 Treatment -0.15 0.21 0.36
2 Control 0.24 0.26 0.01
3 Treatment -0.38 -0.10 0.28
4 Control 0.16 -0.26 -0.43
5 Control 0.46 0.22 -0.24
6 Treatment -0.09 -0.52 -0.44
...

...
...

...
...

Recall our summary table from a few slides ago:

True ATE Estimated ATE Standard error 95% CI
-0.025 0.073 0.032 [0.0095, 0.14]
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Observed data

But we can never see all of it

PID Arm Control outcome Treatment outcome Treatment effect
1 Treatment ? 0.21 ?
2 Control 0.24 ? ?
3 Treatment ? -0.10 ?
4 Control 0.16 ? ?
5 Control 0.46 ? ?
6 Treatment ? -0.52 ?
...

...
...

...
...

Recall our summary table from a few slides ago:

True ATE Estimated ATE Standard error 95% CI
-0.025 0.073 0.032 [0.0095, 0.14]
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We did an RCT analysis on something that’s not an RCT
Treatment assignment is confounded by income

10
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−2 −1 0 1 2 3
Standardised income

C
ou

nt

Trial arm

Control

Treatment

Histogram of incomes by trial arm

In an RCT these distributions would be balanced.
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Treatment propensity
The probability e(Xi) that an individual with covariates Xi is assigned to
treatment.
In an RCT: e(Xi) = 0.5
In our case: e(Xi) varies with income.

0.00

0.25

0.50

0.75

1.00

−2 0 2
Standardised income

E
st

im
at

ed
 tr

ea
tm

en
t p

ro
pe

ns
ity

Trial arm

Control

Treatment

Estimated propensity scores compared to observed treatment

Damian Pavlyshyn (Burnet Institute) Inverse propensity weighting 7 July, 2023 11 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Inverse propensity weights
Idea: Balance the incomes of the treatment and control arms by emphasising
and de-emphasising certain points

IPW(Xi) =
{

1
ê(Xi) if i in treatment arm
1

1−ê(Xi) if i in control arm

Control

Treatment

−2 −1 0 1 2 3
Standardised income

Tr
ia

l a
rm

IPW

2
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6

Estimated propensity scores compared to observed treatment
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Inverse propensity weighted data

Unweighted IPW

−2 −1 0 1 2 3 −2 −1 0 1 2 3
50

25

0

25

Standardised income

S
um

 o
f w

ei
gh

ts

Trial arm

Control

Treatment

Histogram of incomes by trial arm and weighting

Damian Pavlyshyn (Burnet Institute) Inverse propensity weighting 7 July, 2023 13 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Inverse propensity weighted data
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What does this mean for our dataset?

Recall that the true ATE was -0.025.
Let’s see how our IPW estimate does compared to the naive RCT estimate:

Estimate type Estimated ATE 95% CI
RCT 0.073 [0.0095, 0.14]
IPW -0.028 [-0.099, 0.049]
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Some warnings
Why many statisticians call all causal inference bullshit

This analysis relies heavily on the following assumptions:
1 we estimated our propensity scores accurately; and
2 we included all possible confounding variables.

This is fundamentally impossible to verify!!!

The price of accounting for causality:
1 confidence intervals will almost always be wider than for RCT estimates; and
2 theremust be some randomness that’s independent of the treatment
assignment — the less extrinsic randomness, the wider the confidence
intervals.
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What have we learned?

The average treatment effect: Measures the effect of a treatment over a
population, even when different individuals respond differently to treatment.

The potential outcomesmodel: A model for causality that imagines the
treatment and control outcomes for each individual, even though we only ever
observe one of these.

Inverse propensity weighting: A method for modifying observational data to
mimic experimental data. Works by balancing the covariate distributions of the
treatment and control arms.
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Thank You
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The wonderful world of causal inference

CATE, LATE, and treatment heterogeneity: Estimating different effects of a
treatment on different parts of the population.

Matching methods: Create experimental data by finding similar individuals in
treatment and control arms. The actually correct way to do causal inference.

Regression discontinuity designs: Evaluating all-of-population interventions
and why we should distribute scholarship at random.

Instrumental variables: Dealing with unmeasured confounding and other black
magic.

G-methods: Avoid at all costs.
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The IPW estimate of the average treatment effect

The RCT etimate:

ÂTE =
1

n1

∑
i treated

Yi −
1

n0

∑
i control

Yi

=
1

n

( ∑
i treated

1

n1/n
Yi −

∑
i control

1

n0/n
Yi
)

The IPW estimate:

ÂTE =
1

n

( ∑
i treated

1

ê(Xi)
Yi −

∑
i control

1

1− ê(Xi)
Yi
)
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