I reject your RCT and substitute my own

A workshop on inverse propensity weighting

Damian Pavlyshyn¹

¹Disease Elimination Program, Burnet Institute, Melbourne

7 July, 2023

I recognise the Boon Wurrung people of the Kulin Nations as the traditional owners of the land on which we meet today, and acknowledge that they never ceded sovereignty over it.

I pay my respect to elders past and present, and extend that respect to all first nations people.

How to perform an IPW analysis

Make Your Own Eggbox Jellyfish

Ask an adult to help you with scissors and cutting out

Damian Pavlyshyn (Burnet Institute)

7 July, 20

How to perform an IPW analysis

Make Your Own Causal analysis

Ask a statistician to help you with

inverse propensity weighting

Damian Pavlyshyn (Burnet Institute)

7 July, 202

A disease, indicated by low values of a biomarker has an existing, well-established treatment *B*.

An experimental treatment *A* has been given to some patients.

Question: Is A more effective than B at increasing this biomarker?

Target trial:

- Assign each participant to a treatment and control group at random, giving the control group treatment *B* and the treatment group treatment *A*.
- Por each participant *i*, take a baseline and post-treatment measurement of the biomarker. The outcome is the difference between these measurements, which we call Y_i.
- Output the average of the outcomes Y_i in the treatment group with the Y_i in the control group.

The data

First few rows of the measurements:

PID	Arm	Baseline	Follow-up	Outcome
1	Treatment	1.42	1.64	0.21
2	Control	1.42	1.66	0.24
3	Treatment	1.86	1.76	-0.10
4	Treatment	2.84	2.57	-0.26
5	Control	0.49	0.96	0.46
6	Treatment	1.73	1.21	-0.52
÷	:	:	:	÷

Summary table of the outcomes by trial arm:

Arm	Count	Average outcome
Control	112	0.02
Treatment	136	0.10

2

7 July, 202

The potential outcomes model: Each individual *i*, has a "treatment outcome" and a "control outcome". The treatment effect TE_i is the difference between outcomes for this individual.

The average treatment effect ATE is the average of these treatment effects:

$$\mathsf{ATE} = \frac{1}{n} \sum_{i=1}^{n} \mathsf{TE}_{i}.$$

Interpretation: "If all participants were assigned to the treatment arm, how much would the outcome change compared to if all participants were assigned to the control arm?"

We can imagine a table with both potential outcomes for each individual

PID	Arm	Control outcome	Treatment outcome	Treatment effect
1	Treatment	-0.15	0.21	0.36
2	Control	0.24	0.26	0.01
3	Treatment	-0.38	-0.10	0.28
4	Control	0.16	-0.26	-0.43
5	Control	0.46	0.22	-0.24
6	Treatment	-0.09	-0.52	-0.44
÷	:	÷	÷	÷

Recall our summary table from a few slides ago:

	True ATE	Estimated ATE	Standard error	95% CI		
	-0.025	0.073	0.032	[0.0095, 0.14]		
					-	Burnet
Pav	lyshyn (Burnet Institute)	Inverse n	ropensity weighting	7 July 2023	-	8/18

But we can never see all of it

PID	Arm	Control outcome	Treatment outcome	Treatment effect
1	Treatment	?	0.21	?
2	Control	0.24	?	?
3	Treatment	?	-0.10	?
4	Control	0.16	?	?
5	Control	0.46	?	?
6	Treatment	?	-0.52	?
÷	:	÷	÷	÷

Recall our summary table from a few slides ago:

	True ATE	Estimated ATE	Standard error	95% CI		
	-0.025	0.073	0.032	[0.0095, 0.14]		
					E	Burnet ୬ ୯ ୯
Pav	lychyn (Burnet Institute)) Inverse p	ropensity weighting	7 July 2023		0 / 18

We did an RCT analysis on something that's not an RCT

Treatment assignment is confounded by income

In an RCT these distributions would be balanced.

Damian Pavlyshyn (Burnet Institute)

7 July, 202

10/1

Burnet

Treatment propensity

The probability $e(X_i)$ that an individual with covariates X_i is assigned to treatment.

In an RCT: $e(X_i) = 0.5$ In our case: $e(X_i)$ varies with income.

Damian Pavlyshyn (Burnet Institute)

7 July, 2023

Burnet

Inverse propensity weights

Idea: Balance the incomes of the treatment and control arms by emphasising and de-emphasising certain points

 $\mathsf{IPW}(X_i) = \begin{cases} \frac{1}{\hat{\mathsf{e}}(X_i)} & \text{if } i \text{ in treatment arm} \\ \frac{1}{1-\hat{\mathsf{e}}(X_i)} & \text{if } i \text{ in control arm} \end{cases}$

Burnet

Inverse propensity weighted data

Histogram of incomes by trial arm and weighting

Damian Pavlyshyn (Burnet Institute)

7 July, 202

Inverse propensity weighted data

Damian Pavlyshyn (Burnet Institute)

7 July, 202

Recall that the true ATE was -0.025.

Let's see how our IPW estimate does compared to the naive RCT estimate:

Estimate type	Estimated ATE	95% CI
RCT	0.073	[0.0095, 0.14]
IPW	-0.028	[-0.099, 0.049]

This analysis relies heavily on the following assumptions:

- we estimated our propensity scores accurately; and
- e we included all possible confounding variables.

This is fundamentally impossible to verify!!!

The price of accounting for causality:

- confidence intervals will almost always be wider than for RCT estimates; and
- there must be some randomness that's independent of the treatment assignment — the less extrinsic randomness, the wider the confidence intervals.

The average treatment effect: Measures the effect of a treatment over a population, even when different individuals respond differently to treatment.

The potential outcomes model: A model for causality that imagines the treatment *and* control outcomes for each individual, even though we only ever observe one of these.

Inverse propensity weighting: A method for modifying observational data to mimic experimental data. Works by balancing the covariate distributions of the treatment and control arms.

Thank You

CATE, LATE, and treatment heterogeneity: Estimating different effects of a treatment on different parts of the population.

Matching methods: Create experimental data by finding similar individuals in treatment and control arms. The actually correct way to do causal inference.

Regression discontinuity designs: Evaluating all-of-population interventions and why we should distribute scholarship at random.

Instrumental variables: Dealing with unmeasured confounding and other black magic.

G-methods: Avoid at all costs.

The RCT etimate:

$$\widehat{\mathsf{ATE}} = \frac{1}{n_1} \sum_{i \text{ treated}} Y_i - \frac{1}{n_0} \sum_{i \text{ control}} Y_i$$
$$= \frac{1}{n} \Big(\sum_{i \text{ treated}} \frac{1}{n_1/n} Y_i - \sum_{i \text{ control}} \frac{1}{n_0/n} Y_i \Big)$$

The IPW estimate:

$$\widehat{\mathsf{ATE}} = \frac{1}{n} \Big(\sum_{i \text{ treated}} \frac{1}{\hat{\mathsf{e}}(X_i)} Y_i - \sum_{i \text{ control}} \frac{1}{1 - \hat{\mathsf{e}}(X_i)} Y_i \Big)$$

